




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、Recent Progress on Active LearningSheng-Jun Huang (黃圣君)Nanjing University of Aeronautics and Astronautics2018-4-22 VALSELearning with Fewer Labeled Data2 years for 4000 sentencesin PennTreebanktime consumingonly experts can provideaccurate annotationshigh expertisebut expensiveLabeled data is import
2、ant Can we learn with fewer labeled data?2Active Learninglabeled dataquery some labelsoracle(annotator)trainmunlabeled dataGoal: train an effective mwith least labeling cost3Active LearningWhich instance to select?Informative instancesRepresentative instancesInformative & representative instances4Re
3、cent ProgressWeak supervisionThe oracle may be noisyor unavailableCost sensitiveCare the cost rather thanthe numberMdependentDifferent ms mayhave diverse needsMore Practical and More Systematic5Recent ProgressWeak supervisionThe oracle may be noisyor unavailableCost sensitiveCare the cost rather tha
4、nthe numberMdependentDifferent ms mayhave diverse needs6Active learning with Weak SupervisionCollaborative labeling from crowdsLabeler quality estimationEnsemble kernel machine classifierRobust to label noisemHua. Collaborative Active Visual Recognition from Crowds A Distributed Ensemble Approach. P
5、AMI 2018.7.Active learning with Weak SupervisionPairwise comparison from noisy labelersLeverage both types of oraclesLower querying complexity under different noise conditionsLabeling oracleComparison oraclemXu. Noise-Tolerant Interactive Learning Using Pairwise Comparisons. NIPS 2017.8Active learni
6、ng with Weak SupervisionSelf-paced active learningSelf-annotation for high-confident instancesOracle annotation for low-confident instancesLin. Active Self-Paced Learning for Cost-Effective and Progressive Face Identification. PAMI 2018.9Active learning with Weak SupervisionActive query from source
7、domainsOracle is not available in the target domainInsufficient labeled data in all domainsOracledomainadaptationSource DomainTarget DomainWang. On Gleaning Knowledge from Multiple Domains for Active Learning. IJCAI 2017.10Unlabeled data Labeled data Unlabeled data Labeled data Recent ProgressWeak s
8、upervisionThe oracle may be noisyor unavailableCost sensitiveCare the cost rather thanthe numberMdependentDifferent ms mayhave diverse needs11Cost-Sensitive Active LearningOracles are cost-sensitiveDifferent oracles have diverse pricesSelecting both instance and oracleAccurate yet cheap annotationsL
9、ow overall qualityLow priceExpert for this queryHigh overall qualityHigh priceLess familiar with itmWho is this ?Huang. Cost-Effective Active Learning from Diverse Labelers. IJCAI 2017.12.Cost-Sensitive Active LearningLabels are cost-sensitiveLabels have hierarchiesBi-objective optimization tobalanc
10、e the cost and informationYan. Cost-Effective Active Learning for Hierarchical Multi-Label Classification. IJCAI 2018.13Cost-Sensitive Active LearningLearning task is cost-sensitiveQuery the cost of predicting a specific labelGuarantee a polynomial improvement onlabel complexity for low noise caseKr
11、ishnamurthy. Active Learning for Cost-Sensitive Classification. ICML 2017.14Recent ProgressWeak supervisionThe oracle may be noisyor unavailableCost sensitiveCare the cost rather thanthe numberMdependentDifferent ms mayhave diverse needs15Active Learning with Deep MsActive madaptationA novel criteri
12、on “distinctiveness”Reuse of pre-trained mLess training datasHuang. Cost-Effective Training of Deeps with Active MAdaptatio. arXiv 2018.16Active Learning with Deep MsActive annotation with deep generative msDeep generative mto create novel instancesOracle directly annotates the decision boundaryHuijser. Active Decision Boundary Annotation with Deep Generative Ms. ICCV 2017.17Active Learning for Various ApplicationsHuman Pose Estimation Liu & Ferrari ICCV17Face Identification Lin. PAMI18Semantic
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 旅游行業(yè)勞動合同模板及導(dǎo)游責(zé)任協(xié)議
- 礦山開采礦產(chǎn)資源補(bǔ)償費(fèi)結(jié)算與支付合同范本
- 車輛質(zhì)押擔(dān)保一站式服務(wù)協(xié)議
- 水利工程項(xiàng)目場地勘察與治理合同
- 企業(yè)商法培訓(xùn)課件下載
- 宇宙難題考試題及答案
- 商丘運(yùn)營面試題及答案
- 試驗(yàn)員考試題及答案
- 遠(yuǎn)洋大管面試題及答案
- 承包設(shè)備維保方案
- 2023年納雍縣財(cái)政局系統(tǒng)事業(yè)單位招聘筆試題庫及答案解析
- 2023年廣東省普通高中學(xué)業(yè)水平考試及參考答案
- 建筑工程模板施工工藝技術(shù)要點(diǎn)講義豐富課件
- 永能選煤廠生產(chǎn)安全事故應(yīng)急救援預(yù)案
- 浙江省建設(shè)領(lǐng)域簡易勞動合同(A4版本)
- 位置度公差以及其計(jì)算
- 城市規(guī)劃原理課件(完整版)
- 氯化銨危險(xiǎn)化學(xué)品安全周知卡
- 浙江省本級公務(wù)車輛租賃服務(wù)驗(yàn)收單(格式)
- 糖代謝紊亂的實(shí)驗(yàn)診斷
- 國家電網(wǎng)有限公司十八項(xiàng)電網(wǎng)重大反事故措施(修訂版)
評論
0/150
提交評論