




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第八節(jié) 數(shù)學(xué)建模微分方程的應(yīng)用舉例微分方程在物理學(xué)、力學(xué)、經(jīng)濟(jì)學(xué)和管理科學(xué)等實(shí)際問題中具有廣泛的應(yīng)用,本節(jié)我們將集中討論微分方程的實(shí)際應(yīng)用,讀者可從中感受到應(yīng)用數(shù)學(xué)建模的理論和方法解決實(shí)際問題的魅力.內(nèi)容分布衰變問題邏輯斯諦方程價格調(diào)整問題人才分配問題模型追跡問題內(nèi)容要點(diǎn): 一、衰變問題鐳、鈾等放射性元素因不斷放射出各種射線而逐漸減少其質(zhì)量, 這種現(xiàn)象稱為放射性物質(zhì)的衰變. 根據(jù)實(shí)驗(yàn)得知, 衰變速度與現(xiàn)存物質(zhì)的質(zhì)量成正比, 求放射性元素在時刻t的質(zhì)量.用x表示該放射性物質(zhì)在時刻t的質(zhì)量, 則表示x在時刻t的衰變速度, 于是“衰變速度與現(xiàn)存的質(zhì)量成正比”可表示為 (8.1)這是一個以x為未知函數(shù)
2、的一階方程, 它就是放射性元素衰變的數(shù)學(xué)模型, 其中是比例常數(shù), 稱為衰變常數(shù), 因元素的不同而異. 方程右端的負(fù)號表示當(dāng)時間t增加時, 質(zhì)量x減少.解方程(8.1)得通解若已知當(dāng)時, 代入通解中可得 則可得到方程(8.1)特解它反映了某種放射性元素衰變的規(guī)律.注: 物理學(xué)中, 我們稱放射性物質(zhì)從最初的質(zhì)量到衰變?yōu)樵撡|(zhì)量自身的一半所花費(fèi)的時間為半衰期, 不同物質(zhì)的半衰期差別極大. 如鈾的普通同位素()的半衰期約為50億年;通常的鐳()的半衰期是1600年.半衰期是上述放射性物質(zhì)的特征, 然而半衰期卻不依賴于該物質(zhì)的初始量, 一克衰變成半克所需要的時間與一噸衰變成半噸所需要的時間同樣都是1600
3、年, 正是這種事實(shí)才構(gòu)成了確定考古發(fā)現(xiàn)日期時使用的著名的碳-14測驗(yàn)的基礎(chǔ).二、 邏輯斯諦(Logistic)方程:邏輯斯諦方程是一種在許多領(lǐng)域有著廣泛應(yīng)用的數(shù)學(xué)模型, 下面我們借助樹的增長來建立該模型.一棵小樹剛栽下去的時候長得比較慢, 漸漸地, 小樹長高了而且長得越來越快, 幾年不見, 綠蔭底下已經(jīng)可乘涼了; 但長到某一高度后, 它的生長速度趨于穩(wěn)定, 然后再慢慢降下來. 這一現(xiàn)象很具有普遍性. 現(xiàn)在我們來建立這種現(xiàn)象的數(shù)學(xué)模型.如果假設(shè)樹的生長速度與它目前的高度成正比, 則顯然不符合兩頭尤其是后期的生長情形, 因?yàn)闃洳豢赡茉介L越快; 但如果假設(shè)樹的生長速度正比于最大高度與目前高度的差,
4、則又明顯不符合中間一段的生長過程. 折衷一下, 我們假定它的生長速度既與目前的高度,又與最大高度與目前高度之差成正比.設(shè)樹生長的最大高度為H(m), 在t(年)時的高度為h(t), 則有 (8.2)其中是比例常數(shù). 這個方程為Logistic方程. 它是可分離變量的一階常數(shù)微分方程.下面來求解方程(8.2). 分離變量得兩邊積分 得或 故所求通解為其中的是正常數(shù).函數(shù)的圖象稱為Logistic曲線. 圖8-8-1所示的是一條典型的Logistic曲線, 由于它的形狀, 一般也稱為S曲線. 可以看到, 它基本符合我們描述的樹的生長情形. 另外還可以算得這說明樹的生長有一個限制, 因此也稱為限制性
5、增長模式(阻滯增長模型).注: Logistic的中文音譯名是“邏輯斯諦”. “邏輯”在字典中的解釋是“客觀事物發(fā)展的規(guī)律性”, 因此許多現(xiàn)象本質(zhì)上都符合這種S規(guī)律. 除了生物種群的繁殖外, 還有信息的傳播、新技術(shù)的推廣、傳染病的擴(kuò)散以及某些商品的銷售等. 例如流感的傳染、在任其自然發(fā)展(例如初期未引起人們注意)的階段, 可以設(shè)想它的速度既正比于得病的人數(shù)又正比于未傳染到的人數(shù). 開始時患病的人不多因而傳染速度較慢; 但隨著健康人與患者接觸, 受傳染的人越來越多, 傳染的速度也越來越快; 最后, 傳染速度自然而然地漸漸降低, 因?yàn)橐呀?jīng)沒有多少人可被傳染了.下面舉兩個例子說明邏輯斯諦的應(yīng)用.人口
6、阻滯增長模型 1837年, 荷蘭生物學(xué)家Verhulst提出一個人口模型 (8.3)其中的稱為生命系數(shù).我們不詳細(xì)討論這個模型, 只提應(yīng)用它預(yù)測世界人口數(shù)的兩個有趣的結(jié)果.有生態(tài)學(xué)家估計(jì)k的自然值是0.029. 利用本世紀(jì)60年代世界人口年平均增長率為2%以及1965年人口總數(shù)33.4億這兩個數(shù)據(jù), 計(jì)算得從而估計(jì)得:(1)世界人口總數(shù)將趨于極限107.6億.(2)到2000年時世界人口總數(shù)為59.6億.后一個數(shù)字很接近2000年時的實(shí)際人口數(shù), 世界人口在1999年剛進(jìn)入60億.新產(chǎn)品的推廣模型 設(shè)有某種新產(chǎn)品要推向市場, t時刻的銷量為由于產(chǎn)品性能良好, 每個產(chǎn)品都是一個宣傳品, 因此,
7、t時刻產(chǎn)品銷售的增長率與成正比, 同時, 考慮到產(chǎn)品銷售存在一定的市場容量N, 統(tǒng)計(jì)表明與尚未購買該產(chǎn)品的潛在顧客的數(shù)量也成正比, 于是有(8.4)其中k為比例系數(shù). 分離變量積分, 可以解得(8.5)由的圖像知,當(dāng)時, 則有即銷量單調(diào)增加. 當(dāng)時, 當(dāng)時, 當(dāng)時, 即當(dāng)銷量達(dá)到最大需求量N的一半時, 產(chǎn)品最為暢銷, 當(dāng)銷量不足N一半時, 銷售速度不斷增大, 當(dāng)銷量超過一半時, 銷售速度逐漸減少.國內(nèi)外許多經(jīng)濟(jì)學(xué)家調(diào)查表明. 許多產(chǎn)品的銷售曲線與公式(8.5)的曲線(邏輯斯諦曲線)十分接近. 根據(jù)對曲線性狀的分析, 許多分析家認(rèn)為, 在新產(chǎn)品推出的初期, 應(yīng)采用小批量生產(chǎn)并加強(qiáng)廣告宣傳, 而在
8、產(chǎn)品用戶達(dá)到20%到80%期間, 產(chǎn)品應(yīng)大批量生產(chǎn); 在產(chǎn)品用戶超過80%時, 應(yīng)適時轉(zhuǎn)產(chǎn), 可以達(dá)到最大的經(jīng)濟(jì)效益.三、價格調(diào)整模型假設(shè)某種商品的價格變化主要服從市場供求關(guān)系. 一般情況下,商品供給量S是價格P的單調(diào)遞增函數(shù), 商品需求量Q是價格P的單調(diào)遞減函數(shù), 為簡單起見, 分別設(shè)該商品的供給函數(shù)與需求函數(shù)分別為 (8.6)其中均為常數(shù), 且當(dāng)供給量與需求量相等時, 由(8.6)可得供求平衡時的價格并稱為均衡價格.一般地說, 當(dāng)某種商品供不應(yīng)求, 即時, 該商品價格要漲, 當(dāng)供大于求, 即時, 該商品價格要落. 因此, 假設(shè)t時刻的價格的變化率與超額需求量成正比, 于是有方程其中用來反映
9、價格的調(diào)整速度.將(8.6)代入方程, 可得 (8.7)其中常數(shù)方程(8.7)的通解為假設(shè)初始價格代入上式, 得于是上述價格調(diào)整模型的解為由于知, 時, 說明隨著時間不斷推延, 實(shí)際價格將逐漸趨近均衡價格.四、人才分配問題模型每年大學(xué)畢業(yè)生中都要有一定比例的人員留在學(xué)校充實(shí)教師隊(duì)伍, 其余人員將分配到國民經(jīng)濟(jì)其他部門從事經(jīng)濟(jì)和管理工作. 設(shè)t年教師人數(shù)為科學(xué)技術(shù)和管理人員數(shù)目為又設(shè)1個教員每年平均培養(yǎng)個畢業(yè)生, 每年從教育、科技和經(jīng)濟(jì)管理崗位退休、死亡或調(diào)出人員的比率為表示每年大學(xué)生畢業(yè)生中從事教師職業(yè)所占比率于是有方程 (8.8) (8.9)方程(8.8)有通解 (8.10)若設(shè)則于是得特解
10、 (8.11)將(8.11)代入(8.9)方程變?yōu)?(8.12)求解方程(8.12)得通解 (8.13)若設(shè)則于是得特解 (8.14)(8.11)式和(8.14)式分別表示在初始人數(shù)分別為情況, 對應(yīng)于的取值, 在t年教師隊(duì)伍的人數(shù)和科技經(jīng)濟(jì)管理人員人數(shù). 從結(jié)果看出, 如果取即畢業(yè)生全部留在教育界, 則當(dāng)時, 由于必有而說明教師隊(duì)伍將迅速增加. 而科技和經(jīng)濟(jì)管理隊(duì)伍不斷萎縮, 勢必要影響經(jīng)濟(jì)發(fā)展, 反過來也會影響教育的發(fā)展. 如果將接近于零. 則同時也導(dǎo)致說明如果不保證適當(dāng)比例的畢業(yè)生充實(shí)教師選擇好比率, 將關(guān)系到兩支隊(duì)伍的建設(shè), 以及整個國民經(jīng)濟(jì)建設(shè)的大局.五、追跡問題設(shè)開始時甲、乙水平距離為1單位, 乙從A點(diǎn)沿垂直于OA的直線以等速向正北行走; 甲從乙的左側(cè)O點(diǎn)出發(fā), 始終對準(zhǔn)乙以的速度追趕. 求追跡曲線方程, 并問乙行多遠(yuǎn)時, 被甲追到.建立如圖8-8-2所示的坐標(biāo)系, 設(shè)所求追跡曲線方程為經(jīng)過時刻t, 甲在追跡曲線上的點(diǎn)為乙在點(diǎn)于是有 (8.15)由題設(shè), 曲線的弧長OP為解出代入(8.15), 得兩邊對x求導(dǎo), 整理得這
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 產(chǎn)業(yè)園區(qū)入駐合同協(xié)議
- 關(guān)于推進(jìn)跨部門合作項(xiàng)目的工作計(jì)劃
- 關(guān)于采購流程的往來文書說明
- 商務(wù)會議溝通要點(diǎn)及會議紀(jì)要模板
- 健康管理平臺的構(gòu)建及運(yùn)營規(guī)劃
- 機(jī)器人智能化生產(chǎn)線建設(shè)委托代理合同
- 交通物流調(diào)度管理系統(tǒng)建設(shè)方案
- 房屋預(yù)約買賣合同
- 木材原木購銷合同
- 2025年版《認(rèn)識大熊貓》課件發(fā)布
- 中國計(jì)量大學(xué)《微機(jī)原理及其應(yīng)用》2021-2022學(xué)年第一學(xué)期期末試卷
- 中國技能大賽-第45屆世界技能大賽全國選拔賽“水處理技術(shù)”項(xiàng)目技術(shù)工作文件
- 混凝土工安全教育培訓(xùn)試題及答案
- 臨床家庭化產(chǎn)房開展經(jīng)驗(yàn)分享
- 安徽省六安市裕安區(qū)六安市獨(dú)山中學(xué)2024-2025學(xué)年高一上學(xué)期11月期中生物試題(含答案)
- 低血糖的護(hù)理查房
- GB/T 44718-2024城市軌道交通無障礙運(yùn)營服務(wù)規(guī)范
- DB41T 2567-2023 消防技術(shù)服務(wù)機(jī)構(gòu)服務(wù)規(guī)范
- 2024年職工普法教育宣講培訓(xùn)課件
- 音樂鑒賞與實(shí)踐 第一單元第四課音樂的力量(下)
- 《外科護(hù)理學(xué)(第七版)》考試復(fù)習(xí)題庫-上(單選題)
評論
0/150
提交評論