




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1994年4月JOURNALOFHYDRODYNAMICSApr.,1994河渠分漢段的流速分布與不規(guī)則邊界處理理脖)F7至克鋒趙丈嘉羅麟(成都科技大學(xué)高速水另學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都610065)X摘要本文直接對(duì)時(shí)均流的三維控制方程組沿深度積分且采用土一。雙方程模型,建立了一個(gè)深度平均的紊流數(shù)學(xué)模型.效值計(jì)算采用有限容獲法fnSIMPLE程式.對(duì)分漢河段不規(guī)則邊界的處理,本文提出了區(qū)域坐標(biāo)系統(tǒng)法,將整個(gè)計(jì)算區(qū)域分成主道、左波道及右汲道三個(gè)子區(qū)域,使每個(gè)子區(qū)域都具有規(guī)則邊界,對(duì)子區(qū)域建立各自獨(dú)立的坐標(biāo)系統(tǒng).迭代時(shí)先對(duì)子區(qū)域分別求解,然后褊合聯(lián)解.子區(qū)域之間通過(guò)重委區(qū)相互銜接.計(jì)算表明這一方法精度
2、較同、節(jié)省計(jì)算時(shí)間,且簡(jiǎn)單、易于實(shí)現(xiàn)。應(yīng)用上述數(shù)學(xué)模梨和數(shù)值方法,本文對(duì)不對(duì)稱分漢河段的流場(chǎng)進(jìn)行了計(jì)算,得出了計(jì)算區(qū)域的流場(chǎng)分布.計(jì)算結(jié)果比較準(zhǔn)確地普示了流場(chǎng)的內(nèi)部特征.關(guān)錠詞分仙河渠,速度分布,不規(guī)則邊界處理河渠分漢段的流速分布比較復(fù)雜。過(guò)去工程上一般通過(guò)模型實(shí)驗(yàn)來(lái)實(shí)測(cè)流速的分布,這樣不僅很昂貴,而且周期長(zhǎng),不利于方案比較。隨著數(shù)學(xué)模型的不斷改進(jìn)以及數(shù)值方法和計(jì)算機(jī)技術(shù)的不斷進(jìn)步,數(shù)值模擬技術(shù)越來(lái)越顯示其優(yōu)越性。Bramley等首先計(jì)算了對(duì)稱分漢明渠的流場(chǎng),計(jì)算采用了渦魚流函數(shù)方程及Dennis等提出的有限差分格式。為了解決分漢角點(diǎn)處渦量值不連續(xù)的問(wèn)題,Bramley等。:又先后提出了用邊界
3、坐標(biāo)擬合求僻對(duì)稱分漢明渠流場(chǎng)的方法。但是以上計(jì)算僅適用于層流流態(tài),采用的雷諾數(shù)都小于2000。對(duì)于河渠分波段紊流流動(dòng)的流場(chǎng)計(jì)算至今還未見有成功的算例。本文采用深度平均的紊流模型對(duì)分漢河段的素流場(chǎng)進(jìn)行了數(shù)值求解,對(duì)不規(guī)則邊界的處理提出了區(qū)域坐標(biāo)系統(tǒng)法。從理論上解決了分漢河段的流速分布問(wèn)題。1深度平均的紊流數(shù)學(xué)模型根據(jù)不可壓縮三維紊流的連續(xù)方程和動(dòng)量方程.采用&一。模型封閉雷諾應(yīng)力,得不可壓縮紊流的連續(xù)、動(dòng)量、素動(dòng)動(dòng)能及其耗散率的時(shí)均方程為:岑+壽g伊.)+g(伽燦)=_*+§位(票+票I+伽'h=1,2,3)(2)§戌)+£網(wǎng)上)=令陽(yáng)+G*pe(.
4、3)本文于1993年4月10日收到。告B+齊必=新斜g-|+G鑰-喝4、式中外=夕+如e=v.§.g=m洗+割霸C,G,G3"為模型常數(shù).其取值分別、為0.09、1.44、1.92、1.0、1.3。對(duì)于大尺度水體,當(dāng)寬深比比較大時(shí),流動(dòng)參量在橫向的不均勻性將遠(yuǎn)大于垂向的不均勻A性,此時(shí)可假設(shè)方程(2)中的壓力p可按靜壓類比,忽略表面剪應(yīng)力,于是可得方程(1)-(4)的深度平均形式為:、譬+會(huì)3D=0,§3諾+言伽成)=_以覆+WM僮+豺一e6=1,2)(6).&3、+齊片)=言卜東言+MG.+P”一虛、告3)+W3璀=務(wù)化芻言)+g料一Gp?+%.)<
5、;8).在方程(6)中已將深度積分過(guò)程中產(chǎn)生的流散項(xiàng)一并計(jì)入深度平均的素動(dòng)粘性系數(shù)中,r為底部的剪應(yīng)力,由下式確定:,舟=。,面3,+尋);,T6f=Cfpv(u24-(9),。為經(jīng)驗(yàn)?zāi)Σ料禂?shù),本文中取C,=0.003°Ps,Pe分別為對(duì)*方程和e方程沿深度積分所產(chǎn)生的附、加源項(xiàng).k方程和方程的流散項(xiàng)均已收入其中,而:Ps=pc%P”=pc,節(jié)(10)式中加=、C/(t?+了),C,=!=,G=3.6給、布.>CjCj方程(5)(10)即構(gòu)成了深度平均的紊流數(shù)學(xué)模型。省去各變景上表示深度平均的符號(hào)“一”,、令R為深度平均的通用變量,則模型方程組的通用形式為:&.phR)
6、+至(phuR)+京(pfi.R)=條(">等)+碧)+Sr(11)式中匚是擴(kuò)散系數(shù),S,為源項(xiàng),對(duì)應(yīng)于特定的R,小和斗具有特定的形式,如表1。、表模型方程組通用形式中各參教表達(dá)式方程Rr«S,連續(xù)100r一動(dòng)量U-p驀+*(*¥)+務(wù)s賽)V一動(dòng)量V-小哥十備M言)+備E,寄)-j素動(dòng)動(dòng)能k地h<G.+“!一一:素動(dòng)動(dòng)能散率e些a«虹C,海,一+4李克鋒等:河來(lái)分漢段的流速分布與不規(guī)則邊界處理1332數(shù)值計(jì)算及區(qū)域坐標(biāo)系統(tǒng)法本文對(duì)模型方程組的離散采用有限控制體積法。為了曾決壓力梯度項(xiàng)和連續(xù)方程離散的困難,采用了交錯(cuò)網(wǎng)格方法。在方程組離散時(shí)對(duì)
7、對(duì)流-擴(kuò)散項(xiàng)親用了暴函數(shù)格式,對(duì)差分方程的求解,采用三對(duì)角矩陣算法(TDMA)逐行求解。整個(gè)數(shù)值汁算采用Patankar和Spalding提出的SIMPLE計(jì)算程式。收斂準(zhǔn)則是連續(xù)方程的剩余質(zhì)量源與入口質(zhì)垃流量之比和動(dòng)量方程的剩余質(zhì)量源與入口動(dòng)量之比均小于1%。由于分漢段的幾何邊界不規(guī)則,需進(jìn)行特殊處理。為此本文提出了區(qū)域坐標(biāo)系統(tǒng)法。區(qū)域坐標(biāo)系統(tǒng)法的基本思想是將整個(gè)計(jì)算區(qū)域分成若干個(gè)相互重置的子區(qū)域.使每一個(gè)子區(qū)域都具有規(guī)則的幾何邊界,對(duì)每一個(gè)子區(qū)域建立各自獨(dú)立的坐標(biāo)系統(tǒng)。對(duì)于圖1所示的計(jì)算區(qū)域.可以將整個(gè)計(jì)算區(qū)域分為三個(gè)部分:主道、左浬道及右汶道,這樣三個(gè)子區(qū)域都具有規(guī)則的幾何邊界如圖所示,
8、對(duì)三個(gè)子區(qū)域分別建立坐標(biāo)系統(tǒng)日。凹、燮h及5,°數(shù)值計(jì)算時(shí)的關(guān)鍵是子區(qū)域之間的銜接,即重疊區(qū)物理量值的傳遞c圖I計(jì)算區(qū)域示意圖對(duì)于重疊區(qū)內(nèi)的某一點(diǎn),在計(jì)算過(guò)程中必須保證該點(diǎn)上各物理量的值在主、漢道坐標(biāo)系統(tǒng)下保持不變,對(duì)于標(biāo)員,由于其只有大小沒(méi)有方向,在坐標(biāo)轉(zhuǎn)換時(shí)可以直接令同一點(diǎn)在不同坐標(biāo)系下的值相等;對(duì)于矢量P,其分量在坐標(biāo)轉(zhuǎn)換時(shí)滿足:F'=伉P、P=尤,"(12)式中官'、$,為坐標(biāo)標(biāo)轉(zhuǎn)換系數(shù).其值可以通過(guò)主、懼道坐標(biāo)系之間的函數(shù)關(guān)系求得、th'-。尸,-c、佑=苗,玲=無(wú)7”3)對(duì)圖1所示的分汶問(wèn)題,由主道坐標(biāo)系統(tǒng)到漢道坐標(biāo)系統(tǒng)的坐標(biāo)轉(zhuǎn)換系數(shù)R為
9、:爭(zhēng)=,=cos/?;誓=sin仇,畚=sin也(14)摯=sinOi竺=sin":.李cosj,摯=cos(15>dXt沏3%初同理可求得由汶道坐標(biāo)系統(tǒng)到主道坐標(biāo)系統(tǒng)的坐標(biāo)轉(zhuǎn)換系數(shù)丹。采用區(qū)域坐標(biāo)系統(tǒng)法求解圖1所示的分漢問(wèn)題時(shí)的迭代流程為:給整個(gè)計(jì)算域內(nèi)的所有變量賦初值;在主道子區(qū)域上求解模.型方程組;通過(guò)左漢道與右漢道與主道的重疊區(qū)的主道坐標(biāo)系統(tǒng)下物理量的值分別求出重疊區(qū)漢道坐標(biāo)系統(tǒng)下物理量的值,作為漢道子區(qū)域的入流邊界;在左很道子區(qū)域上求解模型方程卷在右漢道子區(qū)域上求解模型方程組;利用重疊區(qū)左、右漢道坐標(biāo)系統(tǒng)下物理量的值來(lái)反求重疊區(qū)主道坐標(biāo)系統(tǒng)下物理量的值.作為主道的出流
10、邊界s返回第步,反復(fù)迭代,直到得出收斂解.對(duì)圖1所示的分漢問(wèn)題,給定如下邊界條件:對(duì)主渠道的入流斷面,取八站e為定值及r=0,對(duì)主渠道子區(qū)域的出流邊界,各變量的值由重疊區(qū)域漢道坐標(biāo)系統(tǒng)下各物理量的值推求;對(duì)于左漢道及右漢道子區(qū)域,入流邊界的值由重疊區(qū)域主道坐標(biāo)系統(tǒng)下各物理量的值推求3假定兩涅道出流斷面處素流巳充分發(fā)展,變量叭L£沿乓方向(對(duì)左漢道)或n方向?qū)τ覞h道)的梯度為零.對(duì)于整個(gè)計(jì)算區(qū)域的固壁,給定無(wú)滑移邊界條件,即令',、叭。的值為零;對(duì)近壁粘性次層,采用壁函數(shù)方法進(jìn)行處理。值得一提的是,由于左、右漢道的流量為未知,在數(shù)值求解的過(guò)程中,必須使左、右漢道出流斷面的流量之
11、和(flow=flowf4-flowr)與來(lái)流流量(flowin)相等.本文在迭代過(guò)程中,將汶道出流斷面的流量(flow)修正為flowin,然后將左、右漢道的入流斷面的流量分別修正為flowl及flowre3計(jì)算結(jié)果及討論.圖2至圖5分別給出了圖1所示的平面分漢問(wèn)題計(jì)算所得的流線圖、流速u剖面圖、素動(dòng)動(dòng)能左及其耗散率e的剖面圖.計(jì)算工況的主要參數(shù)為,c=0.3m,d】=0、3m,rf,=0.173m.出=45。,0i=30°.L=1.5mL2心=5.Cm.來(lái)流速度=0.2m/s.圖2流線圖從圖2及圖3看出,計(jì)算結(jié)果較好地反映了流場(chǎng)的內(nèi)部特征,比較準(zhǔn)確地預(yù)報(bào)了分漢點(diǎn)下游漢道上的回流區(qū)
12、,圖4及圖5所給出的h和e的剖面圖也是定性合理的。135李克鋒等:河果分漢段的流速分布與不規(guī)則邊界處理093演速”剖面圖圖4紊動(dòng)動(dòng)能*剖面圖4結(jié)論(1) 本文采用深度平均的素流模型及有限控制體積法對(duì)平面上不對(duì)稱分漢河渠素流流動(dòng)的流場(chǎng)進(jìn)行了數(shù)值模擬,計(jì)算結(jié)果表明數(shù)學(xué)模型和數(shù)值方法是成功的,計(jì)算結(jié)果從物理概念上洪是合理的.(2) 本文提出的處理分漢河渠不規(guī)則邊界的區(qū)域坐標(biāo)系統(tǒng)法最大優(yōu)點(diǎn)是可以直接利用規(guī)則邊界的計(jì)算方法,而不增加計(jì)算量和計(jì)算機(jī)存儲(chǔ)。既避免了邊界坐標(biāo)擬合法給模型方程組帶來(lái)的附加項(xiàng)及對(duì)方程組非線性性的加劇,也避免了“凍結(jié)”法對(duì)44凍結(jié)”區(qū)的無(wú)意義的計(jì)算和存儲(chǔ)。其關(guān)鍵是子區(qū)域之間的銜接,即
13、重疊區(qū)物理量的值在不同坐標(biāo)系間的轉(zhuǎn)換.計(jì)算表明,這一方法具有U.5-U.5-u.5-j.o圖5素動(dòng)動(dòng)能耗散率e剖面圖簡(jiǎn)單、高效、精度高及易手實(shí)現(xiàn)的特點(diǎn)。<3)本文數(shù)學(xué)模型和數(shù)值方法對(duì)平面上的任意分漢問(wèn)題都是適用的,對(duì)其它類似問(wèn)題亦有借鑒和參考價(jià)值。參考文獻(xiàn)BramleyJS,DennisSCR.TheNumericalSolutionofTwo-DimensionalFlowinaBranchingChannel.Comput.Fluids,1984,12(4;t339-355.DennisSCR,HudsonJD.ADifferenceMethodfarSolvingtheNavjer
14、-StokesEquations.Proc.BtConf.Num.Meth.LaminarandTurbulentFlow,London,1978.p.69,PentechPress.BrarnleyJS,SolanDM.NumericalSolutionforTwo-DimensionalFlowjnaBranchingChannelUsingBoundary-FittedCoordinaUs.ComputeFluids,1987.15(3)t29731LLonsdaleO>BramleyJS,SloanDM.ANonlinearMultigridAlgorithmandBoundar
15、y-FittedCoordinatesfortheSolutionofTwo-DimensionalFlowinaBranchingChannel.J.ofComputationalPhysics,1988.78:114.KolhnanW.PredictionMethodsforTurbulentFlows.HemisspherePublishingCorporation*Washington.NewYork.London,1980.李克鋒,分汲河渠的流場(chǎng)與污染物擴(kuò)散特性研究.成都科技大學(xué)博士論文,1992年.TheVelocityDistributionandIrregularBoundar
16、yTreatmentoftheBranchingRiverorChannelReachLiKe-fengZ/uioWenqianLaJiaLuoLin(ChengduUniversityofScienceandTechnology,Chengdu610065)AbstractIntegratingdirectlyihe3Dgoverningequationsofthetime-averagedflowandadoptingtheketurbulencemodel,adepth-averagedturbulencemodelisestablishedinthispaper.Themathemat
17、icalmodelisnumericallysolvedusingfinitevolumemethodandSIMPLEprocedure.RegionalCoordinateSystem(RCS)methodisputforwardtodealwiththe李克鋒等,河集分漢段的流速分布與不規(guī)則邊界處理137irregularboundary.Thecomputationaldomainisdividedintothreedaughterregions跆mainchannel*leftbranchandrightbranch.Eachdaughterregionhasregularboundariesandaseparatecoordinatesystemisestablished.Thedaughterregionsaresolvedrespectivleyandthencoupledeachother.Theoverlappingareasconnectthedaughterregions.ComputationshowsthatRCSisaccurate,simple,economicforcomputinglimeandeasytooperate.Usingtheabovementionedmathematical
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024成都醫(yī)學(xué)院輔導(dǎo)員招聘筆試真題
- 2025年溶劑型色漿項(xiàng)目合作計(jì)劃書
- 10的認(rèn)識(shí)和加、減法第3課時(shí) 練一練 教案 2025人教版數(shù)學(xué)一年級(jí)上冊(cè)
- 2024年南通市紫瑯第一小學(xué)選聘教師真題
- 2025年柳州市公安機(jī)關(guān)招聘警務(wù)輔助人員考試試題【答案】
- 2025年內(nèi)蒙古自治區(qū)司法廳下屬事業(yè)單位招聘考試筆試試題【答案】
- 2025年TFT-LCD用偏光片項(xiàng)目建議書
- 吉林科技發(fā)展計(jì)劃項(xiàng)目-吉林科技創(chuàng)新服務(wù)平臺(tái)
- 2025年智能變電站自動(dòng)化系統(tǒng)項(xiàng)目建議書
- 2025年航空用玻璃系列項(xiàng)目建議書
- 2025年省國(guó)有資本運(yùn)營(yíng)控股集團(tuán)有限公司人員招聘筆試備考試題及答案詳解(名校卷)
- 2025年輔警招聘考試試題庫(kù)完整答案
- 技術(shù)水平評(píng)價(jià)報(bào)告【范本模板】
- 宿州蕭縣鄉(xiāng)鎮(zhèn)事業(yè)單位招聘考試真題2024
- 2025至2030全球及中國(guó)近炸引信傳感器行業(yè)項(xiàng)目調(diào)研及市場(chǎng)前景預(yù)測(cè)評(píng)估報(bào)告
- 部編版三年級(jí)語(yǔ)文上冊(cè) 寫字表
- 工廠十周年活動(dòng)策劃方案
- 2025至2030臨床決策支持系統(tǒng)行業(yè)項(xiàng)目調(diào)研及市場(chǎng)前景預(yù)測(cè)評(píng)估報(bào)告
- 黑啟動(dòng)操作培訓(xùn)課件
- 天津匯融商業(yè)管理有限公司招聘筆試題庫(kù)2025
- 腫瘤的健康科普
評(píng)論
0/150
提交評(píng)論