




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2016寧波市高三數(shù)學(xué)(上)期末試卷(理帶答案和解釋)2015-2016學(xué)年浙江省寧波市高三(上)期末數(shù)學(xué)試卷(理科)一、選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知集合M=0,1,2,3,4,N=x|1<log2(x+2)<2,則MTN=()A.1B.2,3C.0,1D.2,3,42.已知a6R,則“|a?1|+|a|<1"是“函數(shù)y=ax在R上為減函數(shù)”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件3.已知向量二(2,3),=(?1,2),若?2與非零向量m+n共線(xiàn),則
2、等于()A.?2B.2C.?D.4.如圖是一個(gè)幾何體的三視圖,則這個(gè)幾何體的表面積是()A.84B.C.D.5.已知平面%與平面B交于直線(xiàn)l,且直線(xiàn)a?%,直線(xiàn)b?B,則下列命題錯(cuò)誤的是()A.若,B,a,b,且b與l不垂直,則allB,若%±3,b,l,則a,bC.若a,b,b,l,且a與l不平行,則,BD.若aL,bL,貝U%,B6.已知函數(shù)f(x)=sin(2x+0),其中。為實(shí)數(shù),若f(x)W|f()|對(duì)x6R恒成立,且f()>f(兀),則f(x)的單調(diào)遞增區(qū)間是()A.k;t?,k;t+(k6Z)B.kTt,kTt+(k6Z)C.k7t+,k;t+(k6Z)D.k%?
3、,k%(k6Z)7.已知實(shí)數(shù)列an是等比數(shù)列,若a2a5a8?8,貝U+()A.有最大值B.有最小值C.有最大值D.有最小值8.已知F1,F2分別是雙曲線(xiàn)C:?=1(a>0,b>0)的左、右焦點(diǎn),其離心率為e,點(diǎn)B的坐標(biāo)為(0,b),直線(xiàn)F1B與雙曲線(xiàn)C的兩條漸近線(xiàn)分別交于P、Q兩點(diǎn),線(xiàn)段PQ的垂直平分線(xiàn)與x軸,直線(xiàn)F1B的交點(diǎn)分別為MR,若RMF1WzPQF冊(cè)面積之比為e,則雙曲線(xiàn)C的離心率為()A.B.C.2D.二、填空題:本大題共7小題,多空題每題6分,單空題每題4分,共36分.9.已知loga2=m,loga3=n,貝Ua2m+n=,用m,n表示log46為.10.已知拋物
4、線(xiàn)x2=4y的焦點(diǎn)F的坐標(biāo)為,若M是拋物線(xiàn)上一點(diǎn),|MF|=4,O為坐標(biāo)原點(diǎn),則/MFO=.11,若函數(shù)f(x)=為奇函數(shù),則a=,f(g(?2)=.12.對(duì)于定義在R上的函數(shù)f(x),如果存在實(shí)數(shù)a,使得f(a+x)?f(a?x)=1對(duì)任意實(shí)數(shù)x6R恒成立,則稱(chēng)f(x)為關(guān)于a的“倒函數(shù)”.已知定義在R上的函數(shù)f(x)是關(guān)于0和1的“倒函數(shù)”,且當(dāng)x60,1時(shí),f(x)的取值范圍為1,2,則當(dāng)x61,2時(shí),f(x)的取值范圍為,當(dāng)x6?2016,2016時(shí),f(x)的取值范圍為.13.已知關(guān)于x的方程x2+ax+2b?2=0(a,b60有兩個(gè)相異實(shí)根,若其中一根在區(qū)間(0,1)內(nèi),另一根在區(qū)
5、間(1,2)內(nèi),則的取值范圍是.14.若正數(shù)x,y滿(mǎn)足x2+4y2+x+2y=1,則xy的最大值為.15.在ABC中,/BAC=10,/ACB=30,將直線(xiàn)BC繞AC旋轉(zhuǎn)得到B1C直線(xiàn)AC繞AB旋轉(zhuǎn)得到AC1,則在所有旋轉(zhuǎn)過(guò)程中,直線(xiàn)B1C與直線(xiàn)AC1所成角的取值范圍為.三、解答題:本大題共5小題,共74分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.16.在4ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且a=2,2cos2+sinA=.(I)若滿(mǎn)足條件的ABCW且只有一個(gè),求b的取值范圍;(H)當(dāng)4ABC的周長(zhǎng)取最大值時(shí),求b的值.17.如圖,在多面體EF?ABCM,ABCDABEF勻?yàn)橹苯?/p>
6、梯形,DCE嚨平行四邊形,平面DCEF_平面ABCD(I)求證:DFL平面ABCD(H)若ABDM等邊三角形,且BF與平面DCEFJf成角的正切值為,求二面角A?BF?C的平面角的余弦值.18.已知函數(shù)f(x)=x2?1.(1)對(duì)于任意的1<x<2,不等式4m21f(x)|+4f(m)<|f(x?1)|恒成立,求實(shí)數(shù)m的取值范圍;(2)若對(duì)任意實(shí)數(shù)x161,2.存在實(shí)數(shù)x261,2,使得f(x1)=|2f(x2)?ax2|成立,求實(shí)數(shù)a的取值范圍.19.已知F1,F2為橢圓的左、右焦點(diǎn),F(xiàn)2在以為圓心,1為半徑的圓C2上,且|QF1|+|QF2|=2a.(I)求橢圓C1的方程
7、;(H)過(guò)點(diǎn)P(0,1)的直線(xiàn)l1交橢圓C1于A,B兩點(diǎn),過(guò)P與l1垂直的直線(xiàn)l2交圓C2于C,D兩點(diǎn),M為線(xiàn)段CD中點(diǎn),求MABM積的取值范圍.20.對(duì)任意正整數(shù)n,設(shè)an是方程x2+=1的正根.求證:(1)an+1>an;(2)+<1+.2015-2016學(xué)年浙江省寧波市高三(上)期末數(shù)學(xué)試卷(理科)參考答案與試題解析一、選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知集合M=0,1,2,3,4,N=x|1<log2(x+2)<2,則MTN=()A.1B.2,3C.0,1D.2,3,4【考點(diǎn)】交集及其運(yùn)算.【
8、分析】求出N中不等式的解集確定出N,找出M與N的交集即可.【解答】解:由N中不等式變形得:10g22=1<1og2(x+2)<2=1og24,即2Vx+2<4,解得:0<x<2,即N=(0,2),vM=0,1,2,3,4,/.MAN=1,故選:A.2.已知a6R,則“|a?1|+|a|W1”是“函數(shù)y=ax在R上為減函數(shù)”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件【考點(diǎn)】必要條件、充分條件與充要條件的判斷.【分析】先求出不等式|a?1|+|a|<1的解集,結(jié)合指數(shù)函數(shù)的性質(zhì)判斷充分必要性即可.【解答解:a<0時(shí):|a
9、?1|+|a|=1?a?a<1,解得:a>0,無(wú)解,0wawi時(shí):|a?1|+|a|=1?a+1=1w,成立,a>1時(shí):|a?1|+|a|=2a?1w1,解得:aw1,無(wú)解,故不等式的解集是a60,1,若函數(shù)y=ax在R上為減函數(shù),則a(0,1),故“|a?1|+|a|W1”是“函數(shù)y=ax在R上為減函數(shù)”的必要不充分條件.3.已知向量=(2,3),=(?1,2),若?2與非零向量m+n共線(xiàn),則等于()A. ?2B.2C.?D.【考點(diǎn)】平面向量共線(xiàn)(平行)的坐標(biāo)表示.【分析】先求出?2和m+n,再由向量共線(xiàn)的性質(zhì)求解.【解答】解:.向量=(2,3),=(?1,2),.?2=(
10、2,3)?(?2,4)=(4,?1),m+n=(2m?n,3m+2n,?2與非零向量m+n共線(xiàn),解得14m=?7n,=?.故選:C.4.如圖是一個(gè)幾何體的三視圖,則這個(gè)幾何體的表面積是()A.84B. C.D.【考點(diǎn)】由三視圖求面積、體積.【分析】幾何體為側(cè)放的五棱柱,底面為正視圖中的五邊形,棱柱的高為4.【解答】由三視圖可知幾何體為五棱柱,底面為正視圖中的五邊形,高為4.所以五棱柱的表面積為(4X4?)X2+(4+4+2+2+2)X4=76+48.故選B.5.已知平面與平面B交于直線(xiàn)l,且直線(xiàn)a?%,直線(xiàn)b?B,則下列命題錯(cuò)誤的是()A.若,(3,a,b,且b與l不垂直,貝Ua,lB.若,B
11、,b,l,貝Ua±bC.若a±b,b±l,且a與l不平行,則a±3D.若a,l,b±l,則a±3【考點(diǎn)】空間中直線(xiàn)與平面之間的位置關(guān)系.【分析】根據(jù)空間直線(xiàn)和平面平行或垂直以及平面和平面平行或者垂直的性質(zhì)和判定定理進(jìn)行判斷即可.【解答解:A.若,(3,aXb,且b與l不垂直,則all,正確B.若,bL,則b,,.a?%,-.alb,正確C.a與l不平行,與l相交,;a±b,bL,b,,則,B正確.D.若a,l,b,l,不能得出口,B,因?yàn)椴粷M(mǎn)足面面垂直的條件,故D錯(cuò)誤,故選:D6.已知函數(shù)f(x)=sin(2x+0),其中。
12、為實(shí)數(shù),若f(x)W|f()|對(duì)x6R恒成立,且f()>f(兀),則f(x)的單調(diào)遞增區(qū)間是()A.k;t?,k;t+(k6Z)B.kTt,kTt+(k6Z)C.k7t+,k;t+(k6Z)D.k%?,kx(k6Z)【考點(diǎn)】函數(shù)y=Asin(qx+(|)的圖象變換.【分析】由若對(duì)x6R恒成立,結(jié)合函數(shù)最值的定義,我們易得f()等于函數(shù)的最大值或最小值,由此可以確定滿(mǎn)足條件的初相角。的值,結(jié)合,易求出滿(mǎn)足條件的具體的。值,然后根據(jù)正弦型函數(shù)單調(diào)區(qū)間的求法,即可得到答案.【解答解:若對(duì)x6R恒成立,則f()等于函數(shù)的最大值或最小值即2X+(|)=kx+,kZ則d=k兀+,kZ又即sin(|)
13、<0令k=?1,止匕時(shí)(|)=,滿(mǎn)足條件令2x62k兀?,2k%+,k6Z解得x6故選C7,已知實(shí)數(shù)列an是等比數(shù)列,若a2a5a8=?8,則+()A.有最大值B.有最小值C.有最大值D.有最小值【考點(diǎn)】等比數(shù)列的通項(xiàng)公式.【分析】先求出a5=?2,再由+=1+,利用均值定理能求出+有最小值.【解答】解:.數(shù)列an是等比數(shù)列,a2a5a8?8,,解得a5=?2,.+=+=1+>1+2=1+2=1+2x=,/.+有最小值.故選:D.8.已知F1,F2分別是雙曲線(xiàn)C:?=1(a>0,b>0)的左、右焦點(diǎn),其離心率為e,點(diǎn)B的坐標(biāo)為(0,b),直線(xiàn)F1B與雙曲線(xiàn)C的兩條漸近線(xiàn)
14、分別交于P、Q兩點(diǎn),線(xiàn)段PQ的垂直平分線(xiàn)與x軸,直線(xiàn)F1B的交點(diǎn)分別為MR若RMFKAPQF2的面積之比為e,則雙曲線(xiàn)C的離心率為()A.B.C.2D.【考點(diǎn)】雙曲線(xiàn)的簡(jiǎn)單性質(zhì).【分析】分別求出P,QM的坐標(biāo),利用RMF1WPQF2勺面積之比為e,|MF2|=|F1F2|=2c,可得3c=xM=,即可得出結(jié)論.【解答】解:由題意,|OB|二b,|OF1|=c./.kPQ=,kMR?.直線(xiàn)PQ為:y=(x+c),與y=x.聯(lián)立得:Q(,);與y=?x.聯(lián)立得:P(,).PQ的中點(diǎn)為(,),直線(xiàn)M時(shí):y?=?(x?),令y=0得:xM=,又RMF1WzPQF2的面積之比為e,.|MF2|=|F1F
15、2|=2c,.3c=xM=,解之得:e2=,/.e=故選:A.二、填空題:本大題共7小題,多空題每題6分,單空題每題4分,共36分.9.已知loga2=m,loga3=n,貝Ua2m+n=12,用mn表示10g46為.【考點(diǎn)】對(duì)數(shù)的運(yùn)算性質(zhì).【分析】利用指數(shù)、對(duì)數(shù)的性質(zhì)、運(yùn)算法則和換底公式求解.【解答】解:.loga2=m,loga3=n,.am=2an=3,a2m+n=(anm2Xan=22x3=12,log46=.故答案為:12,.10.已知拋物線(xiàn)x2=4y的焦點(diǎn)F的坐標(biāo)為(0,1),若M是拋物線(xiàn)上一點(diǎn),|MF|=4,。為坐標(biāo)原點(diǎn),則/MFO=或.【考點(diǎn)】拋物線(xiàn)的簡(jiǎn)單性質(zhì).【分析】利用拋物
16、線(xiàn)的方程與定義,即可得出結(jié)論.【解答】解:拋物線(xiàn)x2=4y的焦點(diǎn)在y軸上,且p=1,焦點(diǎn)坐標(biāo)為(0,1);是拋物線(xiàn)上一點(diǎn),|MF|=4,/.M(±2,3),M(2,3),kMF=,./MFO=M(?2,3),kMF=?=?,:/MFO瓶答案為:(0,1),或.11.若函數(shù)f(x)=為奇函數(shù),則a=0,f(g(?2)=?25.【考點(diǎn)】函數(shù)奇偶性的性質(zhì);函數(shù)的值.【分析】利用分段函數(shù),結(jié)合函數(shù)的奇偶性,即可得出結(jié)論.【解答】解:由題意,a=f(0)=0.設(shè)x<0,則?x>0,f(?x)=x2?2x+1=?f(x),/.g(2x)=?x2+2x?1,.g(?2)=?4,/.f(
17、g(?2)=f(?4)=?16?8?1=?25.故答案為:0,?25.12.對(duì)于定義在R上的函數(shù)f(x),如果存在實(shí)數(shù)a,使得f(a+x)?f(a?x)=1對(duì)任意實(shí)數(shù)x6R恒成立,則稱(chēng)f(x)為關(guān)于a的“倒函數(shù)”.已知定義在R上的函數(shù)f(x)是關(guān)于0和1的“倒函數(shù)”,且當(dāng)x60,1時(shí),f(x)的取值范圍為1,2,則當(dāng)x1,2時(shí),f(x)的取值范圍為,1,當(dāng)x6?2016,2016時(shí),f(x)的取值范圍為,2.【考點(diǎn)】抽象函數(shù)及其應(yīng)用.【分析】根據(jù)“倒函數(shù)”的定義,建立兩個(gè)方程關(guān)系,根據(jù)方程關(guān)系判斷函數(shù)的周期性,利用函數(shù)的周期性和函數(shù)的關(guān)系進(jìn)行求解即可得到結(jié)論.【解答解:若函數(shù)f(x)是關(guān)于0和
18、1的“倒函數(shù)”,則f(x)?f(?x)=1,則f(x)?0,且f(1+x)?f(1?x)=1,即f(2+x)?f(?x)=1,即f(2+x)?f(?x)=1=f(x)?f(?x),則f(2+x)=f(x),即函數(shù)f(x)是周期為2的周期函數(shù),若x60,1,則?x6?1,0,2?x61,2,止匕時(shí)1Wf(x)<2vf(x)?f(?x)=1,/.f(?x)=6,1,vf(?x)=f(2?x)6,1,當(dāng)x1,2時(shí),f(x)6,1.即一個(gè)周期內(nèi)當(dāng)x60,2時(shí),f(x),2.當(dāng)x6?2016,2016時(shí),f(x)6,2.故答案為:,1,2.13,已知關(guān)于x的方程x2+ax+2b?2=0(a,b6R
19、)有兩個(gè)相異實(shí)根,若其中一根在區(qū)間(0,1)內(nèi),另一根在區(qū)間(1,2)內(nèi),則的取值范圍是.【考點(diǎn)】一元二次方程的根的分布與系數(shù)的關(guān)系.【分析】由題意知,從而轉(zhuǎn)化為線(xiàn)性規(guī)劃問(wèn)題求解即可.【解答】解:令f(x)=x2+ax+2b?2,由題意知,作其表示的平面區(qū)域如下,的幾何意義是點(diǎn)A(1,4)與陰影內(nèi)的點(diǎn)的連線(xiàn)的斜率,直線(xiàn)m過(guò)點(diǎn)B(?3,2),故km=;直線(xiàn)l過(guò)點(diǎn)C(?1,1),故kl=;結(jié)合圖象可知,的取值范圍是;故答案為:.14.若正數(shù)x,y滿(mǎn)足x2+4y2+x+2y=1,則xy的最大值為【考點(diǎn)】基本不等式.【分析】由題意和基本不等式可得1=x2+(2y)2+x+2y>2?x?2y+2,
20、解關(guān)于的一元二次不等式可得.【解答】解:.正數(shù)x,y滿(mǎn)足x2+4y2+x+2y=1,.1=x2+4y2+x+2y=x2+(2y)2+x+2y>2?x?2y+2,當(dāng)且僅當(dāng)x=2y時(shí)取等號(hào).變形可得2()2+2?1<0,解得<<,結(jié)合>0可得0V<,平方可得2xy<()2=,/.xy<,即xy的最大值為,故答案為:15.在ABCt/BAC=10,/ACB=30,將直線(xiàn)B愉AC旋轉(zhuǎn)彳#至UB1C直線(xiàn)AC繞AB旋轉(zhuǎn)得到AC1則在所有旋轉(zhuǎn)過(guò)程中,直線(xiàn)B1C與直線(xiàn)AC1所成角的取彳1范圍為10°,50°.【考點(diǎn)】異面直線(xiàn)及其所成的角.【分
21、析】平移CB1到A處,由已知得/B1CA=30,/B1AC=150,0W/C1AC;20,由此能求出直線(xiàn)B1*直線(xiàn)AC1所成角的取值范圍.【解答】解:在ABC中,/BAC=10,/ACB=30,將直線(xiàn)BC繞AC旋轉(zhuǎn)得到B1Q直線(xiàn)AC繞AB旋轉(zhuǎn)得至UAC1如圖,平移CB1至UA處,B1Cg§AC旋轉(zhuǎn),./B1CA=30,/B1AC=150,AC1繞AB旋轉(zhuǎn),0<ZC1AC2/CAB.0W/C1AC;20°,設(shè)直線(xiàn)B1*直線(xiàn)AC1所成角為0c,則/B1AC?/C1ACa<ZB1AC廿C1AC130</B1AC?ZC1AC150,150</B1AC廿C1A
22、CC;170,.10<%<50或130<%<170(舍).故答案為:10,50.三、解答題:本大題共5小題,共74分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.16.在ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且a=2,2cos2+sinA=.(I)若滿(mǎn)足條件的ABCt且只有一個(gè),求b的取值范圍;(H)當(dāng)ABC勺周長(zhǎng)取最大值時(shí),求b的值.【考點(diǎn)】正弦定理;余弦定理.【分析】(I)由條件利用三角恒等變換求得cosA和sinA的值,結(jié)合滿(mǎn)足條件的ABdf且只有一個(gè)可得a=bsinA或a>b,由此求得b的范圍.(U)ABC勺周長(zhǎng)為a+b+c,利用余弦定理、基本不等式
23、求得周長(zhǎng)2+b+c最大值為2+2,此時(shí),b=c.【解答】解:(I)ABCfr,角A,B,C所對(duì)的邊分別是a,b,c,且a=2,2cos2+sinA=,.2+sinA=,即2+sinA=,.cosA?sinA=,平方可得sin2A=,.cosA+sinA=,求得cosA=,sinA=6(,),結(jié)合滿(mǎn)足條件的ABCW且只有一個(gè),.A6(,).且a=bsinA,即2=b,即b=;或a>b,即0cb<2,綜上可得,b6(0,2)U.(H)由于ABC的周長(zhǎng)為a+b+c,由余弦定理可得22=b2+c2?2bc?=(b+c)2?bc>(b+c)2?=?(b+c)2,/.b+c<=2,
24、當(dāng)且僅當(dāng)b=c時(shí),取等號(hào),止匕時(shí),三角形的周長(zhǎng)為2+b+c最大為2+2,故此時(shí)b=.17.如圖,在多面體EF?ABC師,ABCDABEF勻?yàn)橹苯翘菪危珼CE助平行四邊形,平面DCEI1平面ABCD(I)求證:DF1平面ABCD(H)若AB虛等邊三角形,且BF與平面DCE所成角的正切值為,求二面角A?BF?C的平面角的余弦值.【考點(diǎn)】二面角的平面角及求法;直線(xiàn)與平面垂直的判定.【分析】(I)推導(dǎo)出AB!平面BCEAB/CD/EF,從而CDL平面BCE進(jìn)而CDLCE由CE/DF,得CDLDF,由此能證明DF1平面ABCD(II)法1:過(guò)C作CHLBE交BE于H,HQBF交BF于K,推導(dǎo)出/HKC為
25、C?BF?E的平面角,由此能求出二面角A?BF?C的平面角的余弦值.(H)法2:以C為原點(diǎn),CDCRCE所在直線(xiàn)為x,y,z軸,建立空間直角坐標(biāo)系.不妨設(shè)CD=1利用向量法能求出二面角ABF?C的平面角的余弦值.【解答】證明:(I)因?yàn)?,所以AB1平面BCE又EF/CD所以EF/平面ABCD從而有AB/CD/EF,所以CDL平面BCE從而CDLCE又CE/DF,所以CDLDF,又平面DCEI1平面ABCD所以DF1平面ABCD解:(II)解法1:過(guò)C作CHLBE交BE于H,HK!BF交BF于K,因?yàn)锳B1平面BCE所以CHLAR從而CHL平面ABEF所以CHLBF,從而B(niǎo)F,平面CHK所以BF
26、±KH即/HKC為C?BF?E的平面角,與A?BF?C的平面角互補(bǔ).因?yàn)锽CLDCEF所以BF與平面DCEFf成角為/BFC由,所以2CB2=CD2+CE2由4ABD是等邊三角形,知/CBD=30,所以令CD=a所以,.所以,.所以二面角A?BF?C的平面角的余弦值為.(H)解法2:因?yàn)镃RCDCE兩兩垂直,以C為原點(diǎn),CQCRCE所在直線(xiàn)為x,y,z軸,如圖建立空間直角坐標(biāo)系.不妨設(shè)CD=1因?yàn)锽CLDCEF所以BF與平面DCEFJf成角為/BFC由,所以2CB2=CD2+CE2由ABDM等邊三角形,知/CBD=30,所以,平面ABF的一個(gè)法向量,平面CBF的一個(gè)法向量則,且取則.
27、二面角A?BF?C的平面角與的夾角互補(bǔ).所以二面角A?BF?C的平面角的余弦值為.18.已知函數(shù)f(x)=x2?1.(1)對(duì)于任意的1WXW2,不等式4m21f(x)|+4f(m)<|f(x?1)|恒成立,求實(shí)數(shù)m的取值范圍;(2)若對(duì)任意實(shí)數(shù)x161,2.存在實(shí)數(shù)x261,2,使得f(x1)=|2f(x2)?ax2|成立,求實(shí)數(shù)a的取值范圍.【考點(diǎn)】函數(shù)恒成立問(wèn)題;二次函數(shù)的性質(zhì).【分析】(1)由題意可得4m2(|x2?1|+1|<4+|x2?2x|,由1WxW2,可得4m2c,運(yùn)用二次函數(shù)的最值的求法,可得右邊函數(shù)的最小值,解不等式可得m的范圍;(2)f(x)在1,2的值域?yàn)锳
28、,h(x)=|2f(x)?ax|的值域?yàn)锽,由題意可得A?B.分別求得函數(shù)f(x)和h(x)的值域,注意討論對(duì)稱(chēng)軸和零點(diǎn),與區(qū)間的關(guān)系,結(jié)合單調(diào)性即可得到值域B,解不等式可得a的范圍.【解答】解:(1)對(duì)于任意的1WxW2,不等式4m21f(x)|+4f(m)<|f(x?1)|恒成立,即為4m2(|x2?1|+1|<4+|x2?2x|,由1WxW2,可得4m2c,由g(x)=4(+)2?,當(dāng)x=2,即=時(shí),g(x)取得最小值,且為1,即有4mM1,解得?;(2)對(duì)任意實(shí)數(shù)x161,2.存在實(shí)數(shù)x261,2,使得f(x1)=|2f(x2)?ax2|成立,可設(shè)f(x)在1,2的值域?yàn)锳
29、,h(x)=|2f(x)?ax|的值域?yàn)锽,可得A?B.由f(x)在1,2遞增,可得A=0,3;當(dāng)a<0時(shí),h(x)=|2x2?ax?2|=2x2?ax?2,(1<x<2),在1,2遞增,可得B=?a,6?2a,可得?a<0<3<6?2a,不成立;當(dāng)a=0時(shí),h(x)=2x2?2,(1<x<2),在1,2遞增,可得B=0,6,可得0W0<3W6,成立;當(dāng)0ca<2時(shí),由h(x)=0,解得x=>1(負(fù)的舍去),h(x)在1,遞減,,2遞增,即有h(x)的值域?yàn)?,h(2),即為0,6?2a,由0W0<3W6?2a,解得0<a<當(dāng)2<a<3時(shí),h(x)在1,遞減,,2遞增,即有h(x)的值域?yàn)?,h(2),即為0,a,由0W0<3Wa,解得a=3;當(dāng)3<a<4時(shí),h(x)在1,2遞減,可得B=2a?6,a,由2a?6<0<3<a,無(wú)解,不成立;當(dāng)4<a<6時(shí),h(x)在1,遞增,在,2遞減,可得B=2a?6,2+,由2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市配送與物流配送環(huán)節(jié)的個(gè)性化服務(wù)考核試卷
- 機(jī)床附件的供應(yīng)鏈優(yōu)化與成本控制考核試卷
- D打印技術(shù)在個(gè)性化鞋類(lèi)設(shè)計(jì)的應(yīng)用考核試卷
- 城市規(guī)劃城市水資源配置考核試卷
- 未來(lái)的數(shù)字化電影產(chǎn)業(yè)考核試卷
- 在家工作租房合同范本
- 代加工藥品合同范本
- 工程承包服務(wù)合同范本
- 酒店客房服務(wù)操作流程制度
- 電力行業(yè)電力設(shè)備維修合同及免責(zé)條款
- 心源性休克護(hù)理
- 法律盡職調(diào)查
- 2024年山東省公務(wù)員考試《行測(cè)》真題及答案解析
- 凝固點(diǎn)降低獲獎(jiǎng)?wù)n件
- 化工原理Ⅱ?qū)W習(xí)通超星期末考試答案章節(jié)答案2024年
- 基因家族分析
- 手機(jī)以舊換新活動(dòng)方案
- 高中英語(yǔ)牛津譯林版(2020)中國(guó)文化+素材
- 施工便道施工方案三工區(qū)縱向便道施工方案
- 2024年河南省高考對(duì)口升學(xué)語(yǔ)文英語(yǔ)試題
- 2024年水利安全員(B證)考試題庫(kù)-上(單選題)
評(píng)論
0/150
提交評(píng)論