版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、湘教版八年級上冊數(shù)學提綱 湘教版八年級上冊數(shù)學提綱 (一)運用公式法 我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。 (二)平方差公式 平方差公式 (1)式子:a2-b2=(a+b)(a-b) (2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。 (三)因式分解 1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。 2.
2、因式分解,必須進行到每一個多項式因式不能再分解為止。 (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到: a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。 上面兩個公式叫完全平方公式。 (2)完全平方式的形式和特點 項數(shù):三項 有兩項是兩個數(shù)的的平方和,這兩項的符號相同。 有一項是這兩個數(shù)的積的兩倍。 (3)當多項式中有公因式時,應該先提出公因
3、式,再用公式分解。 (4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。 (5)分解因式,必須分解到每一個多項式因式都不能再分解為止。 (五)分組分解法 我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式. 如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式. 原式=(am+an)+(bm+bn) =a(m+n)+b(m+n) 做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續(xù)分解,所以
4、原式=(am+an)+(bm+bn) =a(m+n)+b(m+n) =(m+n)×(a+b). 學好數(shù)學的關鍵就在于要適時適量地進行總結歸類,接下來小編就為大家整理了這篇人教版八年級數(shù)學全等三角形知識點講解,希望可以對大家有所幫助。 全等三角形的性質:全等三角形對應邊相等、對應角相等。 全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)。 角平分線的性質:角平分線平分這個角,角平分線上的點到角兩邊的距離相等 角平分線推論:角的內部到角的兩邊的距離相等的點在叫的
5、平分線上。 證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的'邊角關系),、回顧三角形判定,搞清我們還需要什么,、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題). 這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組并提取公因式后它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式. (六)提公因式法 1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項
6、的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當?shù)淖冃?,或改變符號,直到可確定多項式的公因式. 2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意: 1)必須先將常數(shù)項分解成兩個因數(shù)的積,且這兩個因數(shù)的代數(shù)和等于 一次項的系數(shù). 2)將常數(shù)項分解成滿足要求的兩個因數(shù)積的多次嘗試,一般步驟: 列出常數(shù)項分解成兩個因數(shù)的積各種可能情況; 嘗試其中的哪兩個因數(shù)的和恰好等于一次項系數(shù). 3)將原多項式分解成(x+q)(x+p)的形式. (七)分式的乘除法 1.
7、把一個分式的分子與分母的公因式約去,叫做分式的約分. 2.分式進行約分的目的是要把這個分式化為最簡分式. 3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分. 4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3. 5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方. 6.注意混合運算中應先算
8、括號,再算乘方,然后乘除,最后算加減. (八)分數(shù)的加減法 1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來. 2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變. 3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備. 4.通分的依據:分式的基本性質. 5.通分的關鍵:確定幾個分式的公分母. 通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母. 6.類比分數(shù)的通分得到分式的通分: 把幾個異
9、分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分. 7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。 同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。 8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质剑缓笤偌訙p. 9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號. 10.對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分. 11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分
10、,這樣可使運算簡化. 12.作為最后結果,如果是分式則應該是最簡分式. (九)含有字母系數(shù)的一元一次方程 含有字母系數(shù)的一元一次方程 引例:一數(shù)的a倍(a0)等于b,求這個數(shù)。用x表示這個數(shù),根據題意,可得方程ax=b(a0) 在這個方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對x來說,字母a是x的系數(shù),b是常數(shù)項。這個方程就是一個含有字母系數(shù)的一元一次方程。 含有字母系數(shù)的方程的解法與以前學過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零。 如何提高初中數(shù)學成績 數(shù)學基礎知識的學習 想要把數(shù)學學好這記憶與理解的方法是必須要學會
11、的。理解是一門必要學習的法則,只有理解準確,不跑題再結合方法就一定能夠解答。只要能很好的理解這個題目是怎樣的結構,就可以很好的解出答案。在數(shù)學學習中,要把記憶和推理緊密結合起來,比如在三角函數(shù)一章中,所有的公式不外乎都是結合了一些三角函數(shù)的定義與加法定理為基礎方面上,在記憶數(shù)學公式的同時,你可以結合一些例題進行推理,從而可以更快加速你對這公式的理解與記憶。 數(shù)學解題 學數(shù)學必須是要腳踏實地的,沒有那么多投機取巧的辦法,數(shù)學練習要講究高質量的和對癥下藥的方法。對于例題,要養(yǎng)成先分析再做題的習慣,遇到不懂可以先做好標記,然后再多跟同學老師溝通交流。要嘗試結合多種解題方式,要多練習。 錯題集 針對做
12、錯的題目,列舉出該題目所有的解題方法(可以從答案,或者同學,老師那里請教),總有一種是你能掌握的。針對幾套試卷講解,即可有明顯成效。一開始,看似每道題花很久才能了解所有解題方案,但是,成效是非常明顯的。 作業(yè) 作業(yè)對于很多的學生來說都是不陌生的,一般老師在上完課之后都會布置一些作業(yè),這樣使上課所學的內容充分的運用出來,僅僅依靠上課聽是不夠的,還需要在下課之后進行練習來講上課所學的知識鞏固。 初中怎樣學好數(shù)學 一、課前主動預習 首先初中數(shù)學一節(jié)課所學習的知識量比小學相比是多得多。再者很多小學階段數(shù)學課所學習的內容,只要學生自己看看書完全都可以掌握,但初中階段的數(shù)學就完全不同,知識內容多,知識點也
13、較為繁雜,所以需要學生們學會主動去預習,在課前的預習中,主動掌握知識點的脈絡,畫出你已經掌握的和有所疑惑的內容,在可讓有的放矢的學習,有提前預習的脈絡幫助你快速跟上老師講課的節(jié)奏,其次在預習中所畫出的未懂內容更能幫助你在課上著重理解和分析老師的思維和方法,這樣才會讓課堂變得高效,也讓數(shù)學課的學習是有準備的進行,所以預習是學習初中數(shù)學的重要課前準備之一。 二、學會主動思考 筆者的很多學生反映過,他們在初中數(shù)學課堂上很多內容都能聽懂,為什么課下拿到題目還是不會做。其實這個問題在筆者看來,是學生在課堂上聽多思少的原因造成的,很多學生在課堂上只會一味的聽老師所講,從來不會主動去思考老師為什么會產生這樣的思維方式,而恰恰數(shù)學就是培養(yǎng)學生的邏輯思維能力,一旦你只聽不思,只會讓知識的邏輯性關聯(lián)性失去必要的思維痕跡,這就造成了你課下拿到題目還是無從下手。 三、善于總結規(guī)律 講這一點,筆者先舉一個很多初中學生在數(shù)學學習上都會犯的一個錯誤,很多同學是不是同一種類型的題目總是反復錯,經常錯?錯題筆記我也做了,為什么這種類型題換一種形式,我又錯了? 其實,這種問題的出現(xiàn),就是學生缺乏總結規(guī)律的習慣,一種類型的題目
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 宿遷2025年江蘇蘇州宿遷工業(yè)園區(qū)校園招聘事業(yè)編制教師18人筆試歷年典型考點(頻考版試卷)附帶答案詳解
- 呼倫貝爾2024年內蒙古扎賚諾爾區(qū)衛(wèi)生健康委員會所屬事業(yè)單位引進人才7人筆試歷年典型考點(頻考版試卷)附帶答案詳解
- 2024年04月上海中國農業(yè)銀行上海市分行春季招考筆試歷年參考題庫附帶答案詳解
- 天津2025年天津西青區(qū)衛(wèi)健委所屬事業(yè)單位-西青區(qū)生育協(xié)會招聘70人筆試歷年典型考點(頻考版試卷)附帶答案詳解
- 2024年度環(huán)保產業(yè)污染治理與咨詢服務合同3篇
- 2025版軍隊房地產租賃合同終止協(xié)議頁23篇
- 2024年03月屆南京銀行春季全球校園招考筆試安排說明筆試歷年參考題庫附帶答案詳解
- 2024年生豬、菜牛、菜羊、家禽產業(yè)鏈生態(tài)補償購銷合同3篇
- 2025版甲醇原料采購與加工合作協(xié)議2篇
- 2025版鋼材采購合同供應鏈金融產品定制協(xié)議3篇
- 湖南省部分學校2023-2024學年高二上學期期末聯(lián)合考試政治試卷 含解析
- 電大《人力資源管理》期末復習綜合練習題答案(2024年)
- 西師版數(shù)學(四上題)2023-2024學年度小學學業(yè)質量監(jiān)測(試卷)
- 古代小說戲曲專題-形考任務2-國開-參考資料
- GA/T 2133.1-2024便攜式微型計算機移動警務終端第1部分:技術要求
- 人教版四年級上冊數(shù)學數(shù)學復習資料
- 個人營業(yè)執(zhí)照注銷委托書范文
- SB/T 10439-2007醬腌菜
- 戴維斯在線認知量表及其簡介
- 現(xiàn)代CMOS工藝基本流程
- 氨吹脫塔單元設計標準規(guī)定樣式(共15頁)
評論
0/150
提交評論