矩陣分析 引文 第一講_第1頁
矩陣分析 引文 第一講_第2頁
矩陣分析 引文 第一講_第3頁
矩陣分析 引文 第一講_第4頁
矩陣分析 引文 第一講_第5頁
已閱讀5頁,還剩33頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、1Lecture 1:Lecture 1: Vector Spaces and Vector NormsVector Spaces and Vector Norms MATRIX ANALYSIS HITSZTIME: Autumn 2011INSTRUCTOR: You-Hua FanReading assignment on the textbook Section 0.1 Section 5.1, 5.2, 5.4.1-5.4.7 2345678910(f)(ba111212k1314151617181V19V20One of the most remarkable features o

2、f vector spaces is the notion of dimension.We need one simple result that makes this happen, the basis theorem.21222324Norms are a way of putting a measure of distance on vector spaces. The purpose is for the refined analysis of vector spaces from the viewpoint of many applications. It is also to al

3、l the comparison of various vectors on the basis of their length. 25Norms derived from inner product:1.2.26If , we can proof that it is a vector norm.Firstly, we will proof the 27Then, we proof the With the triangle inequality, we can easily proof thatis a vector norm. we say it is derived from the

4、inner product. 28In fact, (i) is a norm derived from the standard inner product:2930=313233 34353637Basic concepts: vector space, subspace, span, linear combination, linearly independent, linear dependent, basis, dimension, vector norm, inner product.Important principles: *A span is a subspace. *Zer

5、o vector is l.d. to all vectors; *Subset of a l.i. set is l.i.; *L.i. vectors can be added to form a basis; *Every basis has the same number of vectors; *Each vector has a unique basis-representation; *Every inner product has the Cauchy-Schwarz inequality. * Every inner product can be used to define a vector norm; * Every vector norm is a continuous function; *All vector norms

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論