中橋梁支座模擬_第1頁
中橋梁支座模擬_第2頁
中橋梁支座模擬_第3頁
中橋梁支座模擬_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、1、opensees中最簡單的支座模擬時(shí)用0長度單元模擬支座,6個(gè)方向分別取不同的剛度值。2、Elastomeric Bearing Element(彈性支座)可模擬支座的屈服后剛度。This command is used to construct an elastomericBearing element object, which is defined by two nodes. The element can have zero length or the appropriate bearing height. The bearing has unidirectional (2D) o

2、r coupled (3D) plasticity properties for the shear deformations, and force-deformation behaviors defined by UniaxialMaterials in the remaining two (2D) or four (3D) directions. By default (sDratio = 0.5) P-Delta moments are equally distributed to the two end-nodes. To avoid the introduction of artif

3、icial viscous damping in the isolation system (sometimes referred to as "damping leakage in the isolation system"), the bearing element does not contribute to the Rayleigh damping by default. If the element has non-zero length, the local x-axis is determined from the nodal geometry unless

4、the optional x-axis vector is specified in which case the nodal geometry is ignored and the user-defined orientation is utilized. For a two-dimensional problem: element elastomericBearing $eleTag $iNode $jNode $kInit $fy $alpha -P $matTag -Mz $matTag <-orient $x1 $x2 $x3 $y1 $y2 $y3> <-shea

5、rDist $sDratio> <-doRayleigh> <-mass $m> For a three-dimensional problem: element elastomericBearing $eleTag $iNode $jNode $kInit $fy $alpha -P $matTag -T $matTag -My $matTag -Mz $matTag <-orient <$x1 $x2 $x3> $y1 $y2 $y3> <-shearDist $sDratio> <-doRayleigh> &l

6、t;-mass $m> $eleTag unique element object tag $iNode $jNode end nodes $kInit initial elastic stiffness in local shear direction 初始水平剪切剛度$fy yield strength 屈服力$alpha post yield stiffness ratio 屈服系數(shù)-P $matTag tag associated with previously-defined UniaxialMaterial in axial direction -T $matTag tag

7、associated with previously-defined UniaxialMaterial in torsional direction -My $matTag tag associated with previously-defined UniaxialMaterial in moment direction around local y-axis -Mz $matTag tag associated with previously-defined UniaxialMaterial in moment direction around local z-axis $x1 $x2 $

8、x3 vector components in global coordinates defining local x-axis (optional) $y1 $y2 $y3 vector components in global coordinates defining local y-axis (optional) $sDratio shear distance from iNode as a fraction of the element length (optional, default = 0.5) -doRayleigh to include Rayleigh damping fr

9、om the bearing (optional, default = no Rayleigh damping contribution) $m element mass (optional, default = 0.0) NOTE: 1) If the element has zero length and optional orientation vectors are not specified, the local element axes coincide with the global axes. Otherwise the local z-axis is defined by t

10、he cross product between the x- and y-vectors specified on the command line. 2) Elastomeric bearings are very stiff in compression, but not rigid. It is not a good idea to specify an extremely large axial stiffness (such as 1E10), because it can lead to problems with numerical sensitivity. Always sp

11、ecify a realistic value for the stiffness of the material that is assigned along the axial direction. 3) The valid queries to an elastomeric bearing element when creating an ElementRecorder object are 'force,' 'localForce,' 'basicForce,' 'localDisplacement,' 'basi

12、cDisplacement' and 'material $matNum matArg1 matArg2 .' Where $matNum is the number associated with the material whose data is to be output. EXAMPLES: element elastomericBearing 1 1 2 20.0 2.50 0.02 -P 1 -Mz 2; # for a 2D elastomeric bearing element elastomericBearing 1 1 2 20 2.50 0.02

13、-P 1 -T 2 -My 3 -Mz 4; # for a 3D elastomeric bearing 3、Flat Slider Bearing Element可模擬四氟乙烯滑板支座以及板式支座的滑動現(xiàn)象。(并不用直接定義屈服力,通過摩擦系數(shù)及支座反力算得屈服力)This command is used to construct a flatSliderBearing element object, which is defined by two nodes. The iNode represents the flat sliding surface and the jNode repr

14、esents the slider. The element can have zero length or the appropriate bearing height. The bearing has unidirectional (2D) or coupled (3D) friction properties for the shear deformations, and force-deformation behaviors defined by UniaxialMaterials in the remaining two (2D) or four (3D) directions. T

15、o capture the uplift behavior of the bearing, the user-specified UniaxialMaterial in the axial direction is modified for no-tension behavior. By default (sDratio = 0.0) P-Delta moments are entirely transferred to the flat sliding surface (iNode). It is important to note that rotations of the flat sl

16、iding surface (rotations at the iNode) affect the shear behavior of the bearing. To avoid the introduction of artificial viscous damping in the isolation system (sometimes referred to as "damping leakage in the isolation system"), the bearing element does not contribute to the Rayleigh dam

17、ping by default. If the element has non-zero length, the local x-axis is determined from the nodal geometry unless the optional x-axis vector is specified in which case the nodal geometry is ignored and the user-defined orientation is utilized. For a two-dimensional problem: element flatSliderBearin

18、g $eleTag $iNode $jNode $frnMdlTag $kInit -P $matTag -Mz $matTag <-orient $x1 $x2 $x3 $y1 $y2 $y3> <-shearDist $sDratio> <-doRayleigh> <-mass $m> <-iter $maxIter $tol> For a three-dimensional problem: element flatSliderBearing $eleTag $iNode $jNode $frnMdlTag $kInit -P

19、$matTag -T $matTag -My $matTag -Mz $matTag <-orient <$x1 $x2 $x3> $y1 $y2 $y3> <-shearDist $sDratio> <-doRayleigh> <-mass $m> <-iter $maxIter $tol> $eleTag unique element object tag $iNode $jNode end nodes $frnMdlTag tag associated with previously-defined Friction

20、Model (用于定義摩擦系數(shù))$kInit initial elastic stiffness in local shear direction 初始水平剛度-P $matTag tag associated with previously-defined UniaxialMaterial in axial direction -T $matTag tag associated with previously-defined UniaxialMaterial in torsional direction -My $matTag tag associated with previously-d

21、efined UniaxialMaterial in moment direction around local y-axis -Mz $matTag tag associated with previously-defined UniaxialMaterial in moment direction around local z-axis $x1 $x2 $x3 vector components in global coordinates defining local x-axis (optional) $y1 $y2 $y3 vector components in global coo

22、rdinates defining local y-axis (optional) $sDratio shear distance from iNode as a fraction of the element length (optional, default = 0.0) -doRayleigh to include Rayleigh damping from the bearing (optional, default = no Rayleigh damping contribution) $m element mass (optional, default = 0.0) $maxIte

23、r maximum number of iterations to undertake to satisfy element equilibrium (optional, default = 20) $tol convergence tolerance to satisfy element equilibrium (optional, default = 1E-8) NOTE: 1) If the element has zero length and optional orientation vectors are not specified, the local element axes

24、coincide with the global axes. Otherwise the local z-axis is defined by the cross product between the x- and y-vectors specified on the command line. 2) Because the friction force is affected by both the axial force and the slip rate, the element can be sensitive numerically. It is recommended that for dynamic analysis a smaller time step is being used than what would be used for a comparable structure with no isolators. 3) If there is uplift (and therefore impact) i

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論