流體力學第一章_第1頁
流體力學第一章_第2頁
流體力學第一章_第3頁
流體力學第一章_第4頁
流體力學第一章_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、1.7 連續(xù)流體中的牛頓力學連續(xù)流體中的牛頓力學 什么是理想流體?什么是理想流體?無固定形狀、可流動、不可壓縮的(密度一定)并且無固定形狀、可流動、不可壓縮的(密度一定)并且無黏性無黏性流體是液體和氣體的總稱,可以發(fā)生形狀和大小的流體是液體和氣體的總稱,可以發(fā)生形狀和大小的改變。其特征是改變。其特征是具有流動性具有流動性,即連續(xù)流體內(nèi)部各部,即連續(xù)流體內(nèi)部各部分之間可以有相對運動;分之間可以有相對運動;一般的流體都是可壓縮的,是有黏性的;一般的流體都是可壓縮的,是有黏性的;對于對于連續(xù)流體連續(xù)流體,我們?nèi)?,我們?nèi) 百|(zhì)元質(zhì)元”代替代替 “ “質(zhì)質(zhì)點點” ” . . 質(zhì)元是有質(zhì)量的體積元。質(zhì)元是有

2、質(zhì)量的體積元。dmdVdSdS被被 分開的兩部分流體之間的作用力與反作用力分開的兩部分流體之間的作用力與反作用力 dS流體內(nèi)部各部分之間的相互作用的內(nèi)力,不流體內(nèi)部各部分之間的相互作用的內(nèi)力,不再看成是作用與一個個離散的質(zhì)點上,而是看再看成是作用與一個個離散的質(zhì)點上,而是看成作用在質(zhì)元的表面上成作用在質(zhì)元的表面上. .dSf d作用在單位面積作用在單位面積上的力稱為應力上的力稱為應力dSf ddf/df剪應力剪應力dfGdSdfdS正應力正應力流體流體dfpdS壓強壓強流體都是可壓縮的,氣體容易壓縮,液體流體都是可壓縮的,氣體容易壓縮,液體就難一些。于此我們只討論流體的機械運動就難一些。于此我

3、們只討論流體的機械運動,不涉及熱力學問題(壓縮引起內(nèi)能變化等,不涉及熱力學問題(壓縮引起內(nèi)能變化等),所以研究的流體都假定是不可壓縮的。),所以研究的流體都假定是不可壓縮的。不可壓縮流體密度是常量,基礎仍然是牛不可壓縮流體密度是常量,基礎仍然是牛頓定律。頓定律。f ddSf d兩個質(zhì)元的作用力垂直接觸面,是垂直壓力兩個質(zhì)元的作用力垂直接觸面,是垂直壓力dfpdS流體內(nèi)部某點處壓強流體內(nèi)部某點處壓強可確定通過改點任意截面兩旁流體的相互作用力可確定通過改點任意截面兩旁流體的相互作用力1. 靜流體內(nèi)部一點壓強靜流體內(nèi)部一點壓強dfpdS2. 靜流體的基本公式靜流體的基本公式mgShg p S0pSy

4、00ShgpSp S00hgpp0pphg0phpS例題:例題:一水庫的水壩長一水庫的水壩長 L,坡度角為,坡度角為,水深,水深 H,求水對水壩的壓力。取大氣壓為求水對水壩的壓力。取大氣壓為P0 ,水的密度,水的密度。zzdzz OpHzHgpp0sindzLdS pdSFHdzzHgpL00sin2021singHHpL解:取狹長條上解:取狹長條上 p 相等相等1.7.1.2 液體的表面現(xiàn)象液體的表面現(xiàn)象 1. 表面張力表面張力ffllf:表面張力系數(shù):表面張力系數(shù) 表示沿單位長度分界線兩側(cè)液面的相互拉力表示沿單位長度分界線兩側(cè)液面的相互拉力(3)表面張力系數(shù)實驗測定)表面張力系數(shù)實驗測定l

5、W2(2)表面張力計算)表面張力計算(4)表面能)表面能0cos02(dAF drWdxldxdSd E表面)(d EdS表面)(dAdSd EdAdSdSd EdS表面表面)大,越?。ū砻鎻埩κ挂后w表面積取最?。?)表面張力存在分析)表面張力存在分析分子力是保守力分子力是保守力pE分子r0r液體表面分子間距較大液體表面分子間距較大表面分子受力不為零表面分子受力不為零表面張力是使液面處于極小表面張力是使液面處于極小例例1.34 取水銀的密度取水銀的密度 ,表面張力系數(shù)表面張力系數(shù) (和空氣為界),(和空氣為界),為了使質(zhì)量為為了使質(zhì)量為 的水銀滴在空氣中的水銀滴在空氣中等溫散布成半徑為等溫

6、散布成半徑為 的小水銀滴,的小水銀滴,需要做多少功?需要做多少功? 33mkg106 .131mN50. 0kg1036. 13 m100 . 16r解:表面積增加需要外力做功解:表面積增加需要外力做功SEA表表面面設水銀滴為球狀,大的半徑為設水銀滴為球狀,大的半徑為 R,小的半徑為,小的半徑為 r333434rNRM總質(zhì)量不變總質(zhì)量不變3143MRMrN3432244RrNS2244RrNA J15. 0面積增量面積增量需做功需做功大滴半徑大滴半徑小滴數(shù)量小滴數(shù)量2. 彎曲液體表面內(nèi)外壓強差彎曲液體表面內(nèi)外壓強差附加壓附加壓強強0ppp內(nèi)(1)球形液面附加壓強)球形液面附加壓強R2內(nèi)內(nèi)p2R

7、0p2022RpRRp內(nèi)Rppp20內(nèi)Rppp20內(nèi)2202pRRpR內(nèi)內(nèi)RaPP20內(nèi)R2內(nèi)內(nèi)p2R0p內(nèi)pp 0內(nèi)pp 0內(nèi)pp 00p內(nèi)p0p內(nèi)p0p內(nèi)p02neiaPPR02neiaPPR例例1.35 有一半徑為有一半徑為 R 的球形肥皂泡,如圖。試求的球形肥皂泡,如圖。試求液膜內(nèi)外兩點液膜內(nèi)外兩點 A、C 的壓強差。的壓強差。ABC解:液膜有內(nèi)外兩個表面。解:液膜有內(nèi)外兩個表面。因液膜很薄,內(nèi)外表面的半因液膜很薄,內(nèi)外表面的半徑都看作是徑都看作是 R。內(nèi)表面內(nèi)表面RaPPAB2外表面外表面RaPPCB2皂泡內(nèi)外壓強差皂泡內(nèi)外壓強差 RaPPCA4 任意形狀的彎曲液面某處的附加壓強任意

8、形狀的彎曲液面某處的附加壓強 拉普拉斯公式拉普拉斯公式 21011RRppp內(nèi)內(nèi)RRR21對于凸球形液面對于凸球形液面 對于凹球形液面對于凹球形液面 RRR2121,RRR對于凸圓柱形液面對于凸圓柱形液面 3. 毛細現(xiàn)象毛細現(xiàn)象接觸角接觸角毛細現(xiàn)象是由表面張力和接觸角所決定。毛細現(xiàn)象是由表面張力和接觸角所決定。 /cosRr02/AppRghpPpAB0grgRhcos2/202/ABppRp0BpPghAgrgRhcos2/2grgRhcos2/20grah2僅適用于圓截面毛細管。僅適用于圓截面毛細管。 例題:例題:在內(nèi)半徑在內(nèi)半徑 r 的毛細管中注水,在管的下端形的毛細管中注水,在管的下端

9、形成一凸形球狀液面,曲率半徑成一凸形球狀液面,曲率半徑 R ;管內(nèi)上部形成;管內(nèi)上部形成凹形球狀液面,設其曲率半徑與管的內(nèi)半徑相同。凹形球狀液面,設其曲率半徑與管的內(nèi)半徑相同。已知水的表面張力系數(shù)已知水的表面張力系數(shù),求管中水柱的高度。,求管中水柱的高度。hAB解:球形液面附加壓強公式解:球形液面附加壓強公式rppA20RppB20rRppAB112ghppAB流體靜力學的基本公式流體靜力學的基本公式聯(lián)立可得聯(lián)立可得rRgh112rRgh112管中水柱的高度管中水柱的高度1.7.2 流體動力學流體動力學分析方法有:拉格朗日方法、分析方法有:拉格朗日方法、歐拉法歐拉法流線流線流管流管定常流動定常

10、流動 ),(zyxvv不定常流動不定常流動 ),(tzyxvv1.7.2.1 連續(xù)性方程連續(xù)性方程 1v2v1dS2dS流管非常細,截面上流速相等流管非常細,截面上流速相等流體不可壓縮,流體不可壓縮, 為常量為常量21VVdQdQ2211dSdSvv常量常量dSv常量常量dSv或者或者連續(xù)性方程連續(xù)性方程 物理實質(zhì)體現(xiàn)了流體在流動中質(zhì)量守恒。物理實質(zhì)體現(xiàn)了流體在流動中質(zhì)量守恒。 1.7.2.2 伯努利方程伯努利方程1. 理想流體理想流體 內(nèi)摩擦力內(nèi)摩擦力 黏滯性流體黏滯性流體 我們把不可壓縮的無黏滯性流體稱為我們把不可壓縮的無黏滯性流體稱為理想流體理想流體 2. 理想流體定常流動中的功能原理理

11、想流體定常流動中的功能原理伯努利方程伯努利方程 在作定常流動的理想流體中任取一細流管在作定常流動的理想流體中任取一細流管 1p2p1v2v1h2h1S2S1a2a2b1b1212222121mghmmghmEvv1212222121ghVghVvv外力做功外力做功VppbaSpbaSpA)2122221111(根據(jù)功能原理根據(jù)功能原理 EA222212112121ghpghpvv細流管內(nèi)的任意點有細流管內(nèi)的任意點有 常常量量ghp221v是理想流體作定常流動時的動力學規(guī)律是理想流體作定常流動時的動力學規(guī)律 伯努利方程伯努利方程在工程上,伯努利方程經(jīng)常寫成在工程上,伯努利方程經(jīng)常寫成 常常量量h

12、ggp22v水平流管或氣體中高度差效應不顯著的情況水平流管或氣體中高度差效應不顯著的情況常常量量221vp2222112121vvpp3. 伯努利方程的應用伯努利方程的應用 小孔流速小孔流速AB0p0ph20021Bpghpv根據(jù)伯努利方程有根據(jù)伯努利方程有 小孔流速為小孔流速為 ghB2v計算小孔流量計算小孔流量 BBBVSghSQ2 vAB0p0pAhBh虹吸管虹吸管 BABhhg2v200210BBAghpghpv伯努利方程伯努利方程B 處流速為處流速為 流量計流量計hBvAvABASBS222121BBAAppvv根據(jù)伯努利方程有根據(jù)伯努利方程有 ghppBA根據(jù)連續(xù)性原理根據(jù)連續(xù)性原

13、理 BBAAdSdSvv222BABAAAVSSghSSSQ v可得流量為可得流量為 流速測量流速測量0vO0pAA 點稱為駐點點稱為駐點伯努利方程伯努利方程20021v ppA002ppAv待測流速為待測流速為dOABChd h河道水速簡單測量河道水速簡單測量 hdgppAgdpp0ghppA0002ppAvgh20vghc 20v1.7.2.3 彎管中流體的反作用力彎管中流體的反作用力 1p2p1v2v1h2h1S2S1a2a2b1b質(zhì)點系的動量定理質(zhì)點系的動量定理2121aabbPPtF由于定常流動由于定常流動12vvmmtF由體積流量定義由體積流量定義 tQVmV)()(1212vvv

14、vVQdtmmddtPdF系系FS1v2v1v2vv由連續(xù)性原理由連續(xù)性原理 vvv21流體流量為流體流量為 SQVv轉(zhuǎn)彎流體對管壁的反作用大小為轉(zhuǎn)彎流體對管壁的反作用大小為SSF2122 vv-vv方向為圖中所示沿方向為圖中所示沿 450 線指向管壁線指向管壁 1.7.3 黏滯流體的流動黏滯流體的流動自然界存在著兩種不同的流態(tài):自然界存在著兩種不同的流態(tài):層流層流和湍流和湍流 1.7.3.1 黏滯流體層流規(guī)律黏滯流體層流規(guī)律 vvdvSdl1. 流體的黏滯性流體的黏滯性兩層流體之間的黏滯力兩層流體之間的黏滯力 Sdldvf牛頓黏滯定律牛頓黏滯定律 黏滯性的影響因素黏滯性的影響因素2. 伯努利

15、方程的修正伯努利方程的修正 當黏滯性流體作定常流動時,必須考慮由內(nèi)當黏滯性流體作定常流動時,必須考慮由內(nèi)摩擦引起的能量損耗。伯努利方程應修正為摩擦引起的能量損耗。伯努利方程應修正為 wghpghp222212112121vv沿程能量損失沿程能量損失 粗細均勻的水平細流管粗細均勻的水平細流管 wpp21兩端開口的堅直管中定常流動兩端開口的堅直管中定常流動 whhg)(213. 兩個著名公式兩個著名公式無限長剛性圓管內(nèi)穩(wěn)定層流的粘滯性規(guī)律。無限長剛性圓管內(nèi)穩(wěn)定層流的粘滯性規(guī)律。 (1) 泊肅葉公式泊肅葉公式 VQ rvRr1p2prfrflr水平方向受力平衡水平方向受力平衡dtdlrrppv2221rdrlppd221v即有即有0v,Rr處處Rrrdrlppd2210vv22214rRlppv這就是管中徑向流速分布這就是管中徑向流速分布 drrrrdrvdQV2圓環(huán)面積的流量為圓環(huán)面積的流量為 4218RlppQV泊肅葉公式泊肅

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論