2021-2022學(xué)年上海市嘉定高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第1頁
2021-2022學(xué)年上海市嘉定高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第2頁
2021-2022學(xué)年上海市嘉定高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第3頁
2021-2022學(xué)年上海市嘉定高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第4頁
2021-2022學(xué)年上海市嘉定高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時請按要求用筆。3請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知,則下列關(guān)系正確的是( )ABCD2執(zhí)行如圖所示的程序框圖,若輸出的,則處應(yīng)填寫( )ABCD3已知偶函數(shù)在區(qū)

2、間內(nèi)單調(diào)遞減,則,滿足( )ABCD4一個幾何體的三視圖如圖所示,則該幾何體的表面積為( )ABCD5甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到.已知他們四人中只有一人說了真話,根據(jù)他們的說法,可以斷定值班的人是( )A甲B乙C丙D丁6已知角的終邊經(jīng)過點,則ABCD7設(shè)是虛數(shù)單位,則( )ABCD8已知函數(shù)(e為自然對數(shù)底數(shù)),若關(guān)于x的不等式有且只有一個正整數(shù)解,則實數(shù)m的最大值為( )ABCD9已知函數(shù)的圖象在點處的切線方程是,則( )A2B3C-2D-310為雙曲線的左焦點

3、,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標(biāo)原點,若,且,則雙曲線的離心率為( )ABCD11等比數(shù)列若則( )A6B6C-6D12蒙特卡洛算法是以概率和統(tǒng)計的理論、方法為基礎(chǔ)的一種計算方法,將所求解的問題同一定的概率模型相聯(lián)系;用均勻投點實現(xiàn)統(tǒng)計模擬和抽樣,以獲得問題的近似解,故又稱統(tǒng)計模擬法或統(tǒng)計實驗法.現(xiàn)向一邊長為的正方形模型內(nèi)均勻投點,落入陰影部分的概率為,則圓周率( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13在的二項展開式中,所有項的系數(shù)的和為_14設(shè)集合,則_.15已知復(fù)數(shù),其中為虛數(shù)單位,若復(fù)數(shù)為純虛數(shù),則實數(shù)的值是_16已知向量

4、,且,則_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,湖面上的點在線段上,且,均與圓相切,切點分別為,其中棧道,和小島在同一個平面上.沿圓的優(yōu)?。▓A上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當(dāng)為何值時,棧道總長度最短.18(12分)在直角坐標(biāo)系中,已知直線的直角坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線和直線的極坐標(biāo)方程;(2)已知直線與曲線、

5、相交于異于極點的點,若的極徑分別為,求的值.19(12分)已知數(shù)列,滿足.(1)求數(shù)列,的通項公式;(2)分別求數(shù)列,的前項和,.20(12分)在直角坐標(biāo)系中,是過定點且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點為極點,以軸非負(fù)半軸為極軸,取相同單位長度)中,曲線的極坐標(biāo)方程為.(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標(biāo)方程;(2)若曲線與直線相交于不同的兩點,求的取值范圍.21(12分)已知橢圓()經(jīng)過點,離心率為,、為橢圓上不同的三點,且滿足,為坐標(biāo)原點(1)若直線、的斜率都存在,求證:為定值;(2)求的取值范圍22(10分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),

6、以坐標(biāo)原點為極點,x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為(1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;(2)設(shè)點,直線l與曲線C交于不同的兩點A、B,求的值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】首先判斷和1的大小關(guān)系,再由換底公式和對數(shù)函數(shù)的單調(diào)性判斷的大小即可.【詳解】因為,所以,綜上可得.故選:A【點睛】本題考查了換底公式和對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題2B【解析】模擬程序框圖運行分析即得解.【詳解】;.所以處應(yīng)填寫“”故選:B【點睛】本題主要考查程序框圖,意在考

7、查學(xué)生對這些知識的理解掌握水平.3D【解析】首先由函數(shù)為偶函數(shù),可得函數(shù)在內(nèi)單調(diào)遞增,再由,即可判定大小【詳解】因為偶函數(shù)在減,所以在上增,.故選:D【點睛】本題考查函數(shù)的奇偶性和單調(diào)性,不同類型的數(shù)比較大小,應(yīng)找一個中間數(shù),通過它實現(xiàn)大小關(guān)系的傳遞,屬于中檔題.4B【解析】由題意首先確定幾何體的空間結(jié)構(gòu)特征,然后結(jié)合空間結(jié)構(gòu)特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個以為球心以為半徑球體的,如圖,故其表面積為,故選:B.【點睛】(1)以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進行恰當(dāng)?shù)姆治?,從三視圖中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系(2)

8、多面體的表面積是各個面的面積之和;組合體的表面積應(yīng)注意重合部分的處理(3)圓柱、圓錐、圓臺的側(cè)面是曲面,計算側(cè)面積時需要將這個曲面展為平面圖形計算,而表面積是側(cè)面積與底面圓的面積之和5A【解析】可采用假設(shè)法進行討論推理,即可得到結(jié)論.【詳解】由題意,假設(shè)甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,?。何覜]有抓到就是真的,與他們四人中只有一個人抓到是矛盾的;假設(shè)甲:我沒有抓到是假的,那么?。何覜]有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點睛】本題主要考查了合情推理及其應(yīng)用,其中解答中合理采用假設(shè)法進行討論推理是解答的關(guān)鍵,著重考查了

9、推理與分析判斷能力,屬于基礎(chǔ)題.6D【解析】因為角的終邊經(jīng)過點,所以,則,即.故選D7A【解析】利用復(fù)數(shù)的乘法運算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點睛】本題考查復(fù)數(shù)的乘法運算,考查計算能力,屬于基礎(chǔ)題.8A【解析】若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,利用導(dǎo)數(shù)求出的最小值,分別畫出與的圖象,結(jié)合圖象可得.【詳解】解:,設(shè),當(dāng)時,函數(shù)單調(diào)遞增,當(dāng)時,函數(shù)單調(diào)遞減,當(dāng)時,當(dāng),函數(shù)恒過點,分別畫出與的圖象,如圖所示,若不等式有且只有一個正整數(shù)解,則的圖象在圖象的上方只有一個正整數(shù)值,且,即,且,故實數(shù)m的最大值為,故選:A【點睛】本題考查考查了不等式

10、恒有一正整數(shù)解問題,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了數(shù)形結(jié)合思想,考查了數(shù)學(xué)運算能力.9B【解析】根據(jù)求出再根據(jù)也在直線上,求出b的值,即得解.【詳解】因為,所以所以,又也在直線上,所以,解得所以.故選:B【點睛】本題主要考查導(dǎo)數(shù)的幾何意義,意在考查學(xué)生對這些知識的理解掌握水平.10D【解析】過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結(jié)合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設(shè)該雙曲線的右焦點為,連接.,., ,為的中點,由雙曲線的定義得,即,因此,該雙曲線的離心率為

11、.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.11B【解析】根據(jù)等比中項性質(zhì)代入可得解,由等比數(shù)列項的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項性質(zhì)可知,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項符號相同,所以,故選:B.【點睛】本題考查了等比數(shù)列中等比中項的簡單應(yīng)用,注意項的符號特征,屬于基礎(chǔ)題.12A【解析】計算出黑色部分的面積與總面積的比,即可得解.【詳解】由,.故選:A【點睛】本題考查了面積型幾何概型的概率的計算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。131【解析】設(shè),令,的值即為所有項的系數(shù)之和?!驹斀狻?/p>

12、設(shè),令,所有項的系數(shù)的和為?!军c睛】本題主要考查二項式展開式所有項的系數(shù)的和的求法賦值法。一般地,對于 ,展開式各項系數(shù)之和為,注意與“二項式系數(shù)之和”區(qū)分。14【解析】先解不等式,再求交集的定義求解即可.【詳解】由題,因為,解得,即,則,故答案為:【點睛】本題考查集合的交集運算,考查解一元二次不等式.152【解析】由題,得,然后根據(jù)純虛數(shù)的定義,即可得到本題答案.【詳解】由題,得,又復(fù)數(shù)為純虛數(shù),所以,解得.故答案為:2【點睛】本題主要考查純虛數(shù)定義的應(yīng)用,屬基礎(chǔ)題.16【解析】根據(jù)垂直向量的坐標(biāo)表示可得出關(guān)于實數(shù)的等式,即可求得實數(shù)的值.【詳解】,且,則,解得.故答案為:.【點睛】本題考查

13、利用向量垂直求參數(shù),涉及垂直向量的坐標(biāo)表示,考查計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17,;當(dāng)時,棧道總長度最短.【解析】連,由切線長定理知:,即,則,進而確定的取值范圍;根據(jù)求導(dǎo)得,利用增減性算出,進而求得取值.【詳解】解:連,由切線長定理知:,又,故,則劣弧的長為,因此,優(yōu)弧的長為,又,故,即,所以,則;,其中,-0+單調(diào)遞減極小值單調(diào)遞增故時,所以當(dāng)時,棧道總長度最短.【點睛】本題主要考查導(dǎo)數(shù)在函數(shù)當(dāng)中的應(yīng)用,屬于中檔題.18(1),.(2)【解析】(1)先將曲線的參數(shù)方程化為直角坐標(biāo)方程,即可代入公式化為極坐標(biāo);根據(jù)直線的直角坐標(biāo)方程,求

14、得傾斜角,即可得極坐標(biāo)方程.(2)將直線的極坐標(biāo)方程代入曲線、可得,進而代入可得的值.【詳解】(1)曲線的參數(shù)方程為(為參數(shù)),消去得,把,代入得,從而得的極坐標(biāo)方程為,直線的直角坐標(biāo)方程為,其傾斜角為,直線的極坐標(biāo)方程為.(2)將代入曲線的極坐標(biāo)方程分別得到,則.【點睛】本題考查了參數(shù)方程化為普通方程的方法,直角坐標(biāo)方程化為極坐標(biāo)方程的方法,極坐標(biāo)的幾何意義,屬于中檔題.19(1)(2);【解析】(1),可得為公比為2的等比數(shù)列,可得為公差為1的等差數(shù)列,再算出,的通項公式,解方程組即可;(2)利用分組求和法解決.【詳解】(1)依題意有又.可得數(shù)列為公比為2的等比數(shù)列,為公差為1的等差數(shù)列,

15、由,得解得故數(shù)列,的通項公式分別為.(2),.【點睛】本題考查利用遞推公式求數(shù)列的通項公式以及分組求和法求數(shù)列的前n項和,考查學(xué)生的計算能力,是一道中檔題.20(1)(為參數(shù)),;(2)【解析】分析:(1)直線的參數(shù)方程為(為參數(shù)),其中表示之間的距離,而極坐標(biāo)方程可化為,從而的直角方程為.(2)設(shè),則 ,利用在圓上得到滿足的方程,最后利用韋達定理就可求出兩條線段的和.詳解:(1)直線的參數(shù)方程為(為參數(shù)).曲線的極坐標(biāo)方程可化為.把,代入曲線的極坐標(biāo)方程可得,即.(2)把直線的參數(shù)方程為(為參數(shù))代入圓的方程可得:.曲線與直線相交于不同的兩點,又,.又,.,.的取值范圍是.點睛:(1)直線的

16、參數(shù)方程有多種形式,其中一種為(為直線的傾斜角, 是參數(shù)),這樣的參數(shù)方程中的參數(shù)有明確的幾何意義,它表示 之間的距離.(2)直角坐標(biāo)方程轉(zhuǎn)為極坐標(biāo)方程的關(guān)鍵是利用公式,而極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程的關(guān)鍵是利用公式,后者也可以把極坐標(biāo)方程變形盡量產(chǎn)生以便轉(zhuǎn)化.21(1)證明見解析;(2).【解析】(1)首先根據(jù)題中條件求出橢圓方程,設(shè)、點坐標(biāo),根據(jù)利用坐標(biāo)表示出即可得證;(2)設(shè)直線方程,再與橢圓方程聯(lián)立利用韋達定理表示出,即可求出范圍.【詳解】(1)依題有,所以橢圓方程為設(shè),由為的重心,;又因為,(2)當(dāng)?shù)男甭什淮嬖跁r:,代入橢圓得,當(dāng)?shù)男甭蚀嬖跁r:設(shè)直線為,這里,由,根據(jù)韋達定理有,故,代入橢圓方程有,又因為,綜上,的范圍是.【點睛】本題主要考查了橢圓方程的求解,三角形重心的坐標(biāo)關(guān)系,直線與橢圓所交弦長,屬于一般題.22(1),(2)【解析】(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式即可把曲線的極坐標(biāo)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論