版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1 答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1設(shè)i為虛數(shù)單位,若復(fù)數(shù),則復(fù)數(shù)z等于( )ABCD02在等差數(shù)列中,若為前項和,則的值是( )
2、A156B124C136D1803復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點位于( )A第一象限B第二象限C第三象限D(zhuǎn)第四象限4執(zhí)行如圖所示的程序框圖,則輸出的值為( )ABCD5復(fù)數(shù) (i為虛數(shù)單位)的共軛復(fù)數(shù)是A1+iB1iC1+iD1i6在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為( )ABC1D7過拋物線的焦點作直線交拋物線于兩點,若線段中點的橫坐標(biāo)為3,且,則拋物線的方程是( )ABCD8已知橢圓的焦點分別為,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為( )ABCD9若復(fù)數(shù)滿足,則的虛部為( )A5BCD-510在中,則邊上的高為( )AB2C
3、D11在邊長為2的菱形中,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為( )ABCD12如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內(nèi),且都垂直于棱,且,則的長為( )A4BC2D二、填空題:本題共4小題,每小題5分,共20分。13正四面體的各個點在平面同側(cè),各點到平面的距離分別為1,2,3,4,則正四面體的棱長為_14我國著名的數(shù)學(xué)家秦九韶在數(shù)書九章提出了“三斜求積術(shù)”他把三角形的三條邊分別稱為小斜、中斜和大斜三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個數(shù),小斜平方乘以大斜平方,送到上面得到的那個數(shù),相減后
4、余數(shù)被4除,所得的數(shù)作為“實”,1作為“隅”,開平方后即得面積所謂“實”、“隅”指的是在方程中,p為“隅”,q為“實”即若的大斜、中斜、小斜分別為a,b,c,則.已知點D是邊AB上一點,則的面積為_15已知橢圓:的左,右焦點分別為,過的直線交橢圓于,兩點,若,且的三邊長,成等差數(shù)列,則的離心率為_.16直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點,則的面積為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知函數(shù).(1)若曲線的切線方程為,求實數(shù)的值;(2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.18(12分)在中,角A、B、C的對邊分別
5、為a、b、c,且. (1)求角A的大??;(2)若,的平分線與交于點D,與的外接圓交于點E(異于點A),求的值.19(12分)已知等差數(shù)列滿足,公差,等比數(shù)列滿足,求數(shù)列,的通項公式;若數(shù)列滿足,求的前項和20(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實數(shù)的取值范圍21(12分)已知,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實數(shù)的最大值.22(10分)設(shè)橢圓的離心率為,圓與軸正半軸交于點,圓在點處的切線被橢圓截得的弦長為(1)求橢圓的方程;(2)設(shè)圓上任意一點處的切線交橢圓于點,試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由參考答案一、選擇題:本題共
6、12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)復(fù)數(shù)除法的運算法則,即可求解.【詳解】.故選:B.【點睛】本題考查復(fù)數(shù)的代數(shù)運算,屬于基礎(chǔ)題.2A【解析】因為,可得,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】,.故選:A.【點睛】本題主要考查了求等差數(shù)列前項和,解題關(guān)鍵是掌握等差中項定義和等差數(shù)列前項和公式,考查了分析能力和計算能力,屬于基礎(chǔ)題.3D【解析】由復(fù)數(shù)除法運算求出,再寫出其共軛復(fù)數(shù),得共軛復(fù)數(shù)對應(yīng)點的坐標(biāo)得結(jié)論【詳解】,對應(yīng)點為,在第四象限故選:D.【點睛】本題考查復(fù)數(shù)的除法運算,考查共軛復(fù)數(shù)的概念,考查復(fù)數(shù)的幾何意義掌握復(fù)數(shù)的運
7、算法則是解題關(guān)鍵4B【解析】列出每一次循環(huán),直到計數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.5B【解析】分析:化簡已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得詳解:化簡可得z= z的共軛復(fù)數(shù)為1i.故選B點睛:本題考查復(fù)數(shù)的代數(shù)形式的運算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題6B【解析】首先由正弦定理將邊化角可得,即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因為,所以因為所以,即,時故選:【點睛】本題考查正弦定理的應(yīng)用,余弦函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.7B【解析】利用拋物線的
8、定義可得,把線段AB中點的橫坐標(biāo)為3,代入可得p值,然后可得出拋物線的方程.【詳解】設(shè)拋物線的焦點為F,設(shè)點,由拋物線的定義可知,線段AB中點的橫坐標(biāo)為3,又,可得,所以拋物線方程為.故選:B.【點睛】本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,利用拋物線的定義是解題的關(guān)鍵.8B【解析】根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計算能力,屬于中檔題9C【解析】把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案【詳解】由(1+i)z|3+4i|,得z,z的虛部為故選C【點睛】本題考查
9、復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題10C【解析】結(jié)合正弦定理、三角形的內(nèi)角和定理、兩角和的正弦公式,求得邊長,由此求得邊上的高.【詳解】過作,交的延長線于.由于,所以為鈍角,且,所以.在三角形中,由正弦定理得,即,所以.在中有,即邊上的高為.故選:C【點睛】本小題主要考查正弦定理解三角形,考查三角形的內(nèi)角和定理、兩角和的正弦公式,屬于中檔題.11D【解析】取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,即為二
10、面角的平面角,過點B作于O,則平面ACD,由,可得,即點O為的中心,三棱錐的外接球球心在直線BO上,設(shè)球心為,半徑為,,解得,三棱錐的外接球的表面積為.故選:D.【點睛】本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.12A【解析】由,兩邊平方后展開整理,即可求得,則的長可求【詳解】解:,故選:【點睛】本題考查了向量的多邊形法則、數(shù)量積的運算性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13【解析】不妨設(shè)點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相
11、交,過點D,與AB,AC分別相交于點E,F(xiàn),根據(jù)題意F為中點,E為AB的三等分點(靠近點A),設(shè)棱長為a, 求得,再用余弦定理求得:,從而求得,再根據(jù)頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設(shè)點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F(xiàn),如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設(shè)棱長為a, ,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應(yīng)用,還
12、考查了轉(zhuǎn)化化歸的思想和空間想象,運算求解的能力,屬于難題,14.【解析】利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求積術(shù)”公式即可求得答案.【詳解】,所以,由余弦定理可知,得.根據(jù)“三斜求積術(shù)”可得,所以.【點睛】本題考查正切的和角公式,同角三角函數(shù)的基本關(guān)系式,余弦定理的應(yīng)用,考查學(xué)生分析問題的能力和計算整理能力,難度較易.15【解析】設(shè),根據(jù)勾股定理得出,而由橢圓的定義得出的周長為,有,便可求出和的關(guān)系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長,成等差數(shù)列,設(shè),而,根據(jù)勾股定理有:,解得:,由橢圓定義知:的周長為,有,在直角中,由勾股定理,即:,離心率.故答案為
13、:.【點睛】本題考查橢圓的離心率以及橢圓的定義的應(yīng)用,考查計算能力.16【解析】根據(jù)題意畫出圖形,設(shè),利用三角形相似求得的值,代入三角形的面積公式,即可求解.【詳解】如圖所示,設(shè),由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:. 【點睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,以及三角形相似的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與運算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1);(2)或【解析】(1)根據(jù)解析式求得導(dǎo)函數(shù),設(shè)切點坐標(biāo)為,結(jié)合導(dǎo)數(shù)的幾何意義可得方程,構(gòu)造函數(shù),并求得,由導(dǎo)函數(shù)求得有最小值,
14、進(jìn)而可知由唯一零點,即可代入求得的值;(2)將解析式代入,結(jié)合零點定義化簡并分離參數(shù)得,構(gòu)造函數(shù),根據(jù)題意可知直線與曲線有兩個交點;求得并令求得極值點,列出表格判斷的單調(diào)性與極值,即可確定與有兩個交點時的取值范圍.【詳解】(1)依題意,設(shè)切點為,故,故,則;令,故當(dāng)時,當(dāng)時,故當(dāng)時,函數(shù)有最小值,由于,故有唯一實數(shù)根0,即,則;(2)由,得.所以“在區(qū)間上有兩個零點”等價于“直線與曲線在有兩個交點”;由于.由,解得,.當(dāng)變化時,與的變化情況如下表所示:30+0極小值極大值所以在,上單調(diào)遞減,在上單調(diào)遞增.又因為,故當(dāng)或時,直線與曲線在上有兩個交點,即當(dāng)或時,函數(shù)在區(qū)間上有兩個零點.【點睛】本題
15、考查了導(dǎo)數(shù)的幾何意義應(yīng)用,由切線方程求參數(shù)值,構(gòu)造函數(shù)法求參數(shù)的取值范圍,函數(shù)零點的意義及綜合應(yīng)用,屬于難題.18(1);(2)【解析】(1)由,利用正弦定理轉(zhuǎn)化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結(jié)合,設(shè),在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因為, 所以, 即,即,所以.(2),. 所以,從而.所以,.不妨設(shè),O為外接圓圓心則AO=1,.在中,由正弦定理知,有. 即; 在中,由,從而.所以.【點睛】本題主要考查平面向量的模的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.19,;.【解析】由,公差,有,成等比數(shù)列,所以,解得.進(jìn)而求出數(shù)列,的
16、通項公式;當(dāng)時,由,所以,當(dāng)時,由,可得,進(jìn)而求出前項和【詳解】解:由題意知,公差,有1,成等比數(shù)列,所以,解得所以數(shù)列的通項公式數(shù)列的公比,其通項公式當(dāng)時,由,所以當(dāng)時,由,兩式相減得,所以故所以的前項和,又時,也符合上式,故.【點睛】本題主要考查等差數(shù)列和等比數(shù)列的概念,通項公式,前項和公式的應(yīng)用等基礎(chǔ)知識;考查運算求解能力,方程思想,分類討論思想,應(yīng)用意識,屬于中檔題20(1).(2).【解析】試題分析:()通過討論x的范圍,得到關(guān)于x的不等式組,解出取并集即可;()求出f(x)的最大值,得到關(guān)于a的不等式,解出即可試題解析:(1)不等式等價于或或,解得或,所以不等式的解集是;(2),解
17、得實數(shù)的取值范圍是點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解法一是運用分類討論思想,法二是運用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向21(1)見解析;(2)最大值為.【解析】(1)將函數(shù)表示為分段函數(shù),利用函數(shù)的單調(diào)性求出該函數(shù)的最小值,進(jìn)而可證得結(jié)論成立;(2)由可得出,并將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,進(jìn)而可得出實數(shù)的最大值.【詳解】(1).當(dāng)時,函數(shù)單調(diào)遞減,則;當(dāng)時,函數(shù)單調(diào)遞增,則;當(dāng)時,函數(shù)單調(diào)遞增,則.綜上所述,所以;(2)因為恒成立,且,所以恒成立,即.因為,當(dāng)且僅當(dāng)時等號成立,所以,實數(shù)的最大值為.【點睛】本題考查含絕對值函數(shù)最值的求解,同時也考查了利用基本不等式恒成立求參數(shù),考查推理能力與計算能力,屬于中等題.22(1); (2)見解析.【解析】(I)結(jié)合離心率,得到a,b,c的關(guān)系,計算A的坐標(biāo),計算切線與橢圓交點坐標(biāo),代入橢圓方程,計算參數(shù),即可(II)分切線斜率存在與不存在討論,設(shè)出M,N的坐標(biāo),設(shè)出切線方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版建筑工程主體承包合同(含建筑垃圾資源化處理)范本6篇
- 二零二五年度食堂服務(wù)員派遣合同2篇
- 二零二五年度二手?jǐn)嚢柙O(shè)備二手交易碳排放交易合同3篇
- 二零二五年進(jìn)出口貨物檢驗檢疫合同3篇
- 二零二五版房屋抵押貸款合同樣本編制指南6篇
- 石場生產(chǎn)線承包合同2025年度規(guī)范文本6篇
- 標(biāo)題14:2025年度網(wǎng)絡(luò)安全監(jiān)測與預(yù)警服務(wù)合同2篇
- 二零二五年技術(shù)轉(zhuǎn)讓合同具體條款2篇
- 二零二五年度酒吧經(jīng)營場所租賃合同范本(專業(yè)解析版)2篇
- 二零二五年度建筑工地環(huán)境監(jiān)測與節(jié)能管理系統(tǒng)合同3篇
- EPC總承包項目中的質(zhì)量管理體系
- 滬教版小學(xué)語文古詩(1-4)年級教材
- 外科醫(yī)生年終述職總結(jié)報告
- 橫格紙A4打印模板
- CT設(shè)備維保服務(wù)售后服務(wù)方案
- 重癥血液凈化血管通路的建立與應(yīng)用中國專家共識(2023版)
- 兒科課件:急性細(xì)菌性腦膜炎
- 柜類家具結(jié)構(gòu)設(shè)計課件
- 陶瓷瓷磚企業(yè)(陶瓷廠)全套安全生產(chǎn)操作規(guī)程
- 煤炭運輸安全保障措施提升運輸安全保障措施
- JTGT-3833-2018-公路工程機械臺班費用定額
評論
0/150
提交評論