




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、Cognitive Computing.Computational NeuroscienceJerome SwartzThe Swartz FoundationMay 10, 2006Large Scale Brain ModelingScience IS modelingModels have powerTo explainTo predictTo simulateTo augmentWhy model the brain?Brains are not computers But they are supported by the same physics Energy conservati
2、on Entropy increase Least action Time directionBrains are supported by the same logic, but implemented differentlyLow speed; parallel processing; no symbolic software layer; fundamentally adaptive / interactive; organic vs. inorganic Brain research must be multi-levelScientific collaboration is need
3、edAcross spatial scalesAcross time scalesAcross measurement techniquesCurrent field borders should not remain boundaries Curtail Scale Chauvinism!both scientifically and mathematicallyTo understand, both theoretically and practically, how brains support behavior and experienceTo model brain / behavi
4、or dynamics as Active requiresBetter behavioral measures and modelingBetter brain dynamic imaging / analysisBetter joint brain / behavior analysis the next research frontierBrains are active and multi-scale / multi-levelThe dominant multi-level model: Computers with their physical / logical computer
5、 hierarchy the OSI stackphysical / implementation levelslogical / instruction levels( = STDP)A Multi-Level View of LearningLEARNING at a LEVEL is CHANGE IN INTERACTIONS between its UNITS,implemented by INTERACTIONS at the LEVEL beneath, and by extensionresulting in CHANGE IN LEARNING at the LEVEL ab
6、ove.IncreasingTimescaleSeparation of timescales allows INTERACTIONS at one LEVEL to be LEARNING at the LEVEL above.Interactions=fastLearning=slowLEVELUNITINTERACTIONSLEARNINGsocietyorganismbehaviourecologysocietypredation, symbiosisnatural selectionsensory-motorlearningorganismcellspikessynaptic pla
7、sticitycellproteinmolecular forcesgene expression,protein recyclingvoltage, Cabulk molecular changessynapseamino acidsynapseproteindirect,V,Ca molecular changes( = STDP)A Multi-Level View of LearningLEARNING at one LEVEL is implemented byDYNAMICS between UNITS at the LEVEL below.IncreasingTimescaleS
8、eparation of timescales allows DYNAMICS at one LEVEL to be LEARNING at the LEVEL above.Dynamics=fastLearning=slowLEVELUNITDYNAMICSLEARNINGsocietyorganismbehaviourecologysocietypredation, symbiosisnatural selectionsensory-motorlearningorganismcellspikessynaptic plasticitycellproteinmolecular forcesge
9、ne expression,protein recyclingvoltage, Cabulk molecular changessynapseamino acidsynapseproteindirect,V,Ca molecular changesWhat idea will fill in the question mark?physiology (of STDP)physics of self-organisationprobabilistic machine learning?(STDP=spike timing-dependent plasticity) -unsupervised p
10、robability density estimation across scales the smaller (molecular) models the larger (spikes). suggested by STDP physiology, where information flow from neurons to synapses is inter-level.? = the Levels Hypothesis: Learning in the brain is: network of 2 brainsnetwork of neuronsnetwork of macromolec
11、ulesnetwork of protein complexes(e.g., synapses)Networks within networks1 cell1 brainMulti-level modeling:ICA/Infomax between Layers.(eg: V1 density-estimates Retina)2 within-level feedforward molecular sublevel is implementation social superlevel is reward predicts independent activity only models
12、outside inputretinaV1synaptic weightsxyInfomax between Levels.(eg: synapses density-estimate spikes)1 between-level includes all feedback molecular net models/creates social net is boundary condition permits arbitrary activity dependencies models input and intrinsic togetherall neural spikesall syna
13、ptic readoutsynapses,dendritestypdf of all spike timespdf of all synaptic readoutsIf we canmake thispdf uniformthen we have a model constructed from all synaptic and dendritic causalityICA transform minimises statisticaldependence between outputs. The bases produced are data-dependent,not fixed as in Fourier or Wavelettransforms.The Infomax principle/ICA al
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T-ZZB 1584-2023 低壓電源系統(tǒng)的電涌保護器(SPD)
- 二零二五年度專業(yè)技術師徒傳承合作合同
- 2025年度門店合作線上線下融合營銷協(xié)議
- 二零二五年度不占股份分紅權益共享協(xié)議
- 二零二五年度招商引資合同中的政府與企業(yè)合作模式創(chuàng)新
- 2025年度終止供貨協(xié)議函范文模板與簽訂程序指導
- 二零二五年度綠色建筑產業(yè)廠房租賃服務協(xié)議
- 二零二五年度勞動合同法未簽訂合同員工競業(yè)禁止協(xié)議
- 二零二五年度物業(yè)安全管理人員勞動合同范本
- 二零二五年度消防安全設施設備安全評估與整改服務合同
- 七年級下冊《平行線的判定》課件與練習
- 修高速土方合同范例
- 2024年形勢與政策復習題庫含答案(綜合題)
- 江蘇省南通市2025屆高三第一次調研測試數(shù)學試題(南通一模)(含答案)
- DCMM數(shù)據(jù)管理師練習測試卷
- 油氣行業(yè)人才需求預測-洞察分析
- 檢修安全知識培訓課件
- 學校心理健康教育存在的問題及改進措施
- 合成生物學研發(fā)平臺與年產200噸合成生物制品項目可行性研究報告寫作模板-申批備案
- 2025年品控部工作計劃
- 《交通運輸概論》課件
評論
0/150
提交評論