Cognitive Computing Computational Neuroscience Almaden Institute Jerome Swartz_第1頁
Cognitive Computing Computational Neuroscience Almaden Institute Jerome Swartz_第2頁
Cognitive Computing Computational Neuroscience Almaden Institute Jerome Swartz_第3頁
Cognitive Computing Computational Neuroscience Almaden Institute Jerome Swartz_第4頁
Cognitive Computing Computational Neuroscience Almaden Institute Jerome Swartz_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、Cognitive Computing.Computational NeuroscienceJerome SwartzThe Swartz FoundationMay 10, 2006Large Scale Brain ModelingScience IS modelingModels have powerTo explainTo predictTo simulateTo augmentWhy model the brain?Brains are not computers But they are supported by the same physics Energy conservati

2、on Entropy increase Least action Time directionBrains are supported by the same logic, but implemented differentlyLow speed; parallel processing; no symbolic software layer; fundamentally adaptive / interactive; organic vs. inorganic Brain research must be multi-levelScientific collaboration is need

3、edAcross spatial scalesAcross time scalesAcross measurement techniquesCurrent field borders should not remain boundaries Curtail Scale Chauvinism!both scientifically and mathematicallyTo understand, both theoretically and practically, how brains support behavior and experienceTo model brain / behavi

4、or dynamics as Active requiresBetter behavioral measures and modelingBetter brain dynamic imaging / analysisBetter joint brain / behavior analysis the next research frontierBrains are active and multi-scale / multi-levelThe dominant multi-level model: Computers with their physical / logical computer

5、 hierarchy the OSI stackphysical / implementation levelslogical / instruction levels( = STDP)A Multi-Level View of LearningLEARNING at a LEVEL is CHANGE IN INTERACTIONS between its UNITS,implemented by INTERACTIONS at the LEVEL beneath, and by extensionresulting in CHANGE IN LEARNING at the LEVEL ab

6、ove.IncreasingTimescaleSeparation of timescales allows INTERACTIONS at one LEVEL to be LEARNING at the LEVEL above.Interactions=fastLearning=slowLEVELUNITINTERACTIONSLEARNINGsocietyorganismbehaviourecologysocietypredation, symbiosisnatural selectionsensory-motorlearningorganismcellspikessynaptic pla

7、sticitycellproteinmolecular forcesgene expression,protein recyclingvoltage, Cabulk molecular changessynapseamino acidsynapseproteindirect,V,Ca molecular changes( = STDP)A Multi-Level View of LearningLEARNING at one LEVEL is implemented byDYNAMICS between UNITS at the LEVEL below.IncreasingTimescaleS

8、eparation of timescales allows DYNAMICS at one LEVEL to be LEARNING at the LEVEL above.Dynamics=fastLearning=slowLEVELUNITDYNAMICSLEARNINGsocietyorganismbehaviourecologysocietypredation, symbiosisnatural selectionsensory-motorlearningorganismcellspikessynaptic plasticitycellproteinmolecular forcesge

9、ne expression,protein recyclingvoltage, Cabulk molecular changessynapseamino acidsynapseproteindirect,V,Ca molecular changesWhat idea will fill in the question mark?physiology (of STDP)physics of self-organisationprobabilistic machine learning?(STDP=spike timing-dependent plasticity) -unsupervised p

10、robability density estimation across scales the smaller (molecular) models the larger (spikes). suggested by STDP physiology, where information flow from neurons to synapses is inter-level.? = the Levels Hypothesis: Learning in the brain is: network of 2 brainsnetwork of neuronsnetwork of macromolec

11、ulesnetwork of protein complexes(e.g., synapses)Networks within networks1 cell1 brainMulti-level modeling:ICA/Infomax between Layers.(eg: V1 density-estimates Retina)2 within-level feedforward molecular sublevel is implementation social superlevel is reward predicts independent activity only models

12、outside inputretinaV1synaptic weightsxyInfomax between Levels.(eg: synapses density-estimate spikes)1 between-level includes all feedback molecular net models/creates social net is boundary condition permits arbitrary activity dependencies models input and intrinsic togetherall neural spikesall syna

13、ptic readoutsynapses,dendritestypdf of all spike timespdf of all synaptic readoutsIf we canmake thispdf uniformthen we have a model constructed from all synaptic and dendritic causalityICA transform minimises statisticaldependence between outputs. The bases produced are data-dependent,not fixed as in Fourier or Wavelettransforms.The Infomax principle/ICA al

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論