下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、大數(shù)據(jù)準備度自我評分表實驗總結一、數(shù)據(jù)挖掘?qū)ο蟾鶕?jù)信息存儲格式,用于挖掘的對象有關系數(shù)據(jù)庫、面向?qū)ο髷?shù)據(jù)庫、數(shù)據(jù)倉庫、文本數(shù)據(jù)源、多媒體數(shù)據(jù)庫、空間數(shù)據(jù)庫、時態(tài)數(shù)據(jù)庫、異質(zhì)數(shù)據(jù)庫以及Internet等。二、數(shù)據(jù)挖掘流程定義問題:清晰地定義出業(yè)務問題,確定數(shù)據(jù)挖掘的目的。數(shù)據(jù)準備:數(shù)據(jù)準備包括:選擇數(shù)據(jù)在大型數(shù)據(jù)庫和數(shù)據(jù)倉庫目標中 提取數(shù)據(jù)挖掘的目標數(shù)據(jù)集;數(shù)據(jù)預處理進行數(shù)據(jù)再加工,包括檢查數(shù)據(jù)的完整性及數(shù)據(jù)的一致性、去噪聲,填補丟失的域,刪除無效數(shù)據(jù)等。數(shù)據(jù)挖掘:根據(jù)數(shù)據(jù)功能的類型和和數(shù)據(jù)的特點選擇相應的算法,在凈化和轉(zhuǎn)換過的數(shù)據(jù)集上進行數(shù)據(jù)挖掘。結果分析:對數(shù)據(jù)挖掘的結果進行解釋和評價,轉(zhuǎn)換
2、成為能夠最終被用戶理解的知識。三、數(shù)據(jù)挖掘分類直接數(shù)據(jù)挖掘:目標是利用可用的數(shù)據(jù)建立一個模型,這個模型對剩余的數(shù)據(jù),對一個特定的變量(可以理解成數(shù)據(jù)庫中表的屬性,即列)進行描述。間接數(shù)據(jù)挖掘:目標中沒有選出某一具體的變量,用模型進行描述;而是在所有的變量中建立起某種關系。四、數(shù)據(jù)挖掘的方法神經(jīng)網(wǎng)絡方法神經(jīng)網(wǎng)絡由于本身良好的魯棒性、自組織自適應性、并行處理、分布存儲和高度容錯等特性非常適合解決數(shù)據(jù)挖掘的問題,因此近年來越來越受到人們的關注。遺傳算法遺傳算法是一種基于生物自然選擇與遺傳機理的隨機搜索算法,是一種仿生全局優(yōu)化方法。遺傳算法具有的隱含并行性、易于和其它模型結合等性質(zhì)使得它在數(shù)據(jù)挖掘中被
3、加以應用。決策樹方法決策樹是一種常用于預測模型的算法,它通過將大量數(shù)據(jù)有目的分類,從中找到一些有價值的,潛在的信息。它的主要優(yōu)點是描述簡單,分類速度快,特別適合大規(guī)模的數(shù)據(jù)處理。粗集方法粗集理論是一種研究不精確、不確定知識的數(shù)學工具。粗集方法有幾個優(yōu)點:不需要給出額外信息;簡化輸入信息的表達空間;算法簡單,易于操作。粗集處理的對象是類似二維關系表的信息表。覆蓋正例排斥反例方法它是利用覆蓋所有正例、排斥所有反例的思想來尋找規(guī)則。首先在正例集合中任選一個種子,到反例集合中逐個比較。與字段取值構成的選擇子相容則舍去,相反則保留。按此思想循環(huán)所有正例種子,將得到正例的規(guī)則(選擇子的合取式)。統(tǒng)計分析方
4、法在數(shù)據(jù)庫字段項之間存在兩種關系:函數(shù)關系和相關關系,對它們的分析可采用統(tǒng)計學方法,即利用統(tǒng)計學原理對數(shù)據(jù)庫中的信息進行分析??蛇M行常用統(tǒng)計、回歸分析、相關分析、差異分析等。模糊集方法即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統(tǒng)的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。五、數(shù)據(jù)挖掘任務關聯(lián)分析兩個或兩個以上變量的取值之間存在某種規(guī)律性,就稱為關聯(lián)。數(shù)據(jù)關聯(lián)是數(shù)據(jù)庫中存在的一類重要的、可被發(fā)現(xiàn)的知識。關聯(lián)分為簡單關聯(lián)、時序關聯(lián)和因果關聯(lián)。關聯(lián)分析的目的是找出數(shù)據(jù)庫中隱藏的關聯(lián)網(wǎng)。一般用支持度和可信度兩個閥值來度量關聯(lián)規(guī)則的相關性,還不斷引入興趣度、相關性等參數(shù),使得所挖掘的規(guī)則更符合需求。聚類分析聚類是把數(shù)據(jù)按照相似性歸納成若干類別,同一類中的數(shù)據(jù)彼此相似,不同類中的數(shù)據(jù)相異。聚類分析可以建立宏觀的概念,發(fā)現(xiàn)數(shù)據(jù)的分布模式,以及可能的數(shù)據(jù)屬性之間的相互關系。分類分類就是找出一個類別的概念描述,它代表了這類數(shù)據(jù)的整體信息,即該類的內(nèi)涵描述,并用這種描述來構造模型,一般用規(guī)則或決策樹模式表示。分類是利用訓練數(shù)據(jù)集通過一定的算法而求得分類規(guī)則。分類可被用于規(guī)則描述和預測。預測預測是利用歷史數(shù)據(jù)找出變化規(guī)律,建立模型,并由此模型對未來數(shù)據(jù)的種類及特征進行預測。預測關心的是精度和不確定性,通常用預測方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024游艇銷售及倉儲物流服務合同范本3篇
- 二零二五年度廚房設備進出口貿(mào)易合同2篇
- 專業(yè)2024委托獵頭服務協(xié)議范本版
- 二零二五年股東股權解除及退股條件明確協(xié)議書3篇
- 個人租車合同2024年度版:租賃工程車具體條款3篇
- 2024版承包經(jīng)營權抵押合同
- 二零二五版?zhèn)€人房產(chǎn)抵押典當經(jīng)營合同3篇
- 臺州科技職業(yè)學院《內(nèi)科學B》2023-2024學年第一學期期末試卷
- 二零二五年股權投資合同具體條款2篇
- 二零二五年度汽車環(huán)保技術改造投資合同3篇
- 醫(yī)療組長競聘
- 2024年業(yè)績換取股權的協(xié)議書模板
- 顳下頜關節(jié)疾?。谇活M面外科學課件)
- 工業(yè)自動化設備維護保養(yǎng)指南
- 2024人教新版七年級上冊英語單詞英譯漢默寫表
- 《向心力》參考課件4
- 2024至2030年中國膨潤土行業(yè)投資戰(zhàn)略分析及發(fā)展前景研究報告
- 2024年深圳中考數(shù)學真題及答案
- 土方轉(zhuǎn)運合同協(xié)議書
- Module 3 Unit 1 Point to the door(教學設計)-2024-2025學年外研版(三起)英語三年級上冊
- 智能交通信號燈安裝合同樣本
評論
0/150
提交評論