2022屆天津市靜海高考數(shù)學(xué)倒計時模擬卷含解析_第1頁
2022屆天津市靜海高考數(shù)學(xué)倒計時模擬卷含解析_第2頁
2022屆天津市靜海高考數(shù)學(xué)倒計時模擬卷含解析_第3頁
2022屆天津市靜海高考數(shù)學(xué)倒計時模擬卷含解析_第4頁
2022屆天津市靜海高考數(shù)學(xué)倒計時模擬卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知向量滿足,且與的夾角為,則( )ABCD2已知為圓:上任意一點,若線段的垂直平分線交直線于點,則點的軌跡方程為( )ABC()D()3“學(xué)習(xí)強(qiáng)國”學(xué)習(xí)平臺是由中宣部主管,以深入學(xué)習(xí)

2、宣傳習(xí)近平新時代中國特色社會主義思想為主要內(nèi)容,立足全體黨員面向全社會的優(yōu)質(zhì)平臺,現(xiàn)日益成為老百姓了解國家動態(tài)緊跟時代脈搏的熱門該款軟件主要設(shè)有“閱讀文章”“視聽學(xué)習(xí)”兩個學(xué)習(xí)模塊和“每日答題”“每周答題”“專項答題”“挑戰(zhàn)答題”四個答題模塊某人在學(xué)習(xí)過程中,“閱讀文章”不能放首位,四個答題板塊中有且僅有三個答題板塊相鄰的學(xué)習(xí)方法有( )A60B192C240D4324已知直線:與圓:交于,兩點,與平行的直線與圓交于,兩點,且與的面積相等,給出下列直線:,.其中滿足條件的所有直線的編號有( )ABCD5復(fù)數(shù) (i為虛數(shù)單位)的共軛復(fù)數(shù)是A1+iB1iC1+iD1i6若,則, , , 的大小關(guān)系

3、為( )ABCD7一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發(fā)現(xiàn)落在正方形花紋上的米共有51粒,據(jù)此估計圓周率的值為(精確到0.001)( )A3.132B3.137C3.142D3.1478已知,若,則向量在向量方向的投影為( )ABCD9記的最大值和最小值分別為和若平面向量、,滿足,則( )ABCD10若復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點在第二象限,則實數(shù)的取值范圍是( )ABCD11中,為的中點,則( )ABCD212已知函數(shù)滿足,設(shè),則“”是“”的( )A充分不必要條件B必要不充分條件C充要條件D既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分

4、。13設(shè)、滿足約束條件,若的最小值是,則的值為_.14設(shè)是公差不為0的等差數(shù)列的前n項和,且,則_.15已知函數(shù)為偶函數(shù),則_.16設(shè)(其中為自然對數(shù)的底數(shù)),若函數(shù)恰有4個不同的零點,則實數(shù)的取值范圍為_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知橢圓的右焦點為,直線被稱作為橢圓的一條準(zhǔn)線,點在橢圓上(異于橢圓左、右頂點),過點作直線與橢圓相切,且與直線相交于點.(1)求證:.(2)若點在軸的上方,當(dāng)?shù)拿娣e最小時,求直線的斜率.附:多項式因式分解公式:18(12分)已知函數(shù).(1)求不等式的解集;(2)設(shè)的最小值為,正數(shù),滿足,證明:.19(12分)在平

5、面直角坐標(biāo)系中,已知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構(gòu)成邊長為2的等邊三角形(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、試判斷是否為定值,并說明理由20(12分)已知函數(shù),若的解集為(1)求的值;(2)若正實數(shù),滿足,求證:21(12分)已知中,角所對邊的長分別為,且(1)求角的大??;(2)求的值.22(10分)十八大以來,黨中央提出要在2020年實現(xiàn)全面脫貧,為了實現(xiàn)這一目標(biāo),國家對“新農(nóng)合”(新型農(nóng)村合作醫(yī)療)推出了新政,各級財政提高了對“新農(nóng)合”的補(bǔ)助標(biāo)準(zhǔn)提高了各項報銷的比例,其中門診報銷比例如下:表1:新農(nóng)合門診報銷比例醫(yī)院類別村衛(wèi)

6、生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院門診報銷比例60%40%30%20%根據(jù)以往的數(shù)據(jù)統(tǒng)計,李村一個結(jié)算年度門診就診人次情況如下:表2:李村一個結(jié)算年度門診就診情況統(tǒng)計表醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院一個結(jié)算年度內(nèi)各門診就診人次占李村總就診人次的比例70%10%15%5%如果一個結(jié)算年度每人次到村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院門診平均費用分別為50元、100元、200元、500元若李村一個結(jié)算年度內(nèi)去門診就診人次為2000人次()李村在這個結(jié)算年度內(nèi)去三甲醫(yī)院門診就診的人次中,60歲以上的人次占了80%,從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?

7、()如果將李村這個結(jié)算年度內(nèi)門診就診人次占全村總就診人次的比例視為概率,求李村這個結(jié)算年度每人次用于門診實付費用(報銷后個人應(yīng)承擔(dān)部分)的分布列與期望參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】根據(jù)向量的運(yùn)算法則展開后利用數(shù)量積的性質(zhì)即可.【詳解】.故選:A.【點睛】本題主要考查數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.2B【解析】如圖所示:連接,根據(jù)垂直平分線知,故軌跡為雙曲線,計算得到答案.【詳解】如圖所示:連接,根據(jù)垂直平分線知,故,故軌跡為雙曲線,故,故軌跡方程為.故選:.【點睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解

8、題的關(guān)鍵.3C【解析】四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法注意按“閱讀文章”分類【詳解】四個答題板塊中選三個捆綁在一起,和另外一個答題板塊用插入法,由于“閱讀文章”不能放首位,因此不同的方法數(shù)為故選:C【點睛】本題考查排列組合的應(yīng)用,考查捆綁法和插入法求解排列問題對相鄰問題用捆綁法,不相鄰問題用插入法是解決這類問題的常用方法4D【解析】求出圓心到直線的距離為:,得出,根據(jù)條件得出到直線的距離或時滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,而,與的面積相等,或,即到直線的距離或時滿足條件,根據(jù)點到直線距離可知,滿

9、足條件.故選:D.【點睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,涉及點到直線的距離公式.5B【解析】分析:化簡已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得詳解:化簡可得z= z的共軛復(fù)數(shù)為1i.故選B點睛:本題考查復(fù)數(shù)的代數(shù)形式的運(yùn)算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題6D【解析】因為,所以,因為,所以,.綜上;故選D.7B【解析】結(jié)合隨機(jī)模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點睛】本題考查隨機(jī)模擬的概念和幾何概型,屬于基礎(chǔ)題8B【解析】由,再由向量在向量方向的投影為化簡運(yùn)算即可【詳解】, 向量在向量方向的投影為.故選:B.【點睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題9A【解析】設(shè)

10、為、的夾角,根據(jù)題意求得,然后建立平面直角坐標(biāo)系,設(shè),根據(jù)平面向量數(shù)量積的坐標(biāo)運(yùn)算得出點的軌跡方程,將和轉(zhuǎn)化為圓上的點到定點距離,利用數(shù)形結(jié)合思想可得出結(jié)果.【詳解】由已知可得,則,建立平面直角坐標(biāo)系,設(shè),由,可得,即,化簡得點的軌跡方程為,則,則轉(zhuǎn)化為圓上的點與點的距離,轉(zhuǎn)化為圓上的點與點的距離,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標(biāo)化,將問題轉(zhuǎn)化為圓上的點到定點距離的最值問題是解答的關(guān)鍵,考查化歸與轉(zhuǎn)化思想與數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.10B【解析】復(fù)數(shù),在復(fù)平面內(nèi)對應(yīng)的點在第二象限,可得關(guān)于a的不等式組,解得a的范圍.【詳解】,由其在復(fù)平面對應(yīng)的點在第二象

11、限,得,則.故選:B.【點睛】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、不等式的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題11D【解析】在中,由正弦定理得;進(jìn)而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,在中,由余弦定理可得,.故選:D【點睛】本題主要考查了正余弦定理的應(yīng)用,考查了學(xué)生的運(yùn)算求解能力.12B【解析】結(jié)合函數(shù)的對應(yīng)性,利用充分條件和必要條件的定義進(jìn)行判斷即可【詳解】解:若,則,即成立,若,則由,得,則“”是“”的必要不充分條件,故選:B【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)的對應(yīng)性是解決本題的關(guān)鍵,屬于基礎(chǔ)題二、填空題:本題共4小題,

12、每小題5分,共20分。13【解析】畫出滿足條件的平面區(qū)域,求出交點的坐標(biāo),由得,顯然直線過時,最小,代入求出的值即可【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,則點.由得,顯然當(dāng)直線過時,該直線軸上的截距最小,此時最小,解得.故答案為:【點睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題1418【解析】將已知已知轉(zhuǎn)化為的形式,化簡后求得,利用等差數(shù)列前公式化簡,由此求得表達(dá)式的值.【詳解】因為,所以.故填:.【點睛】本題考查等差數(shù)列基本量的計算,考查等差數(shù)列的性質(zhì)以及求和,考查運(yùn)算求解能力,屬于基礎(chǔ)題.15【解析】根據(jù)偶函數(shù)的定義列方程,化簡求得的值.【詳解】由于

13、為偶函數(shù),所以,即,即,即,即,即,即,即,所以.故答案為:【點睛】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù),考查運(yùn)算求解能力,屬于中檔題.16【解析】求函數(shù),研究函數(shù)的單調(diào)性和極值,作出函數(shù)的圖象,設(shè),若函數(shù)恰有4個零點,則等價為函數(shù)有兩個零點,滿足或,利用一元二次函數(shù)根的分布進(jìn)行求解即可【詳解】當(dāng)時,由得:,解得,由得:,解得,即當(dāng)時,函數(shù)取得極大值,同時也是最大值,(e),當(dāng),當(dāng),作出函數(shù)的圖象如圖,設(shè),由圖象知,當(dāng)或,方程有一個根,當(dāng)或時,方程有2個根,當(dāng)時,方程有3個根,則,等價為,當(dāng)時,若函數(shù)恰有4個零點,則等價為函數(shù)有兩個零點,滿足或,則,即(1) 解得:,故答案為:【點睛】本題主要

14、考查函數(shù)與方程的應(yīng)用,利用換元法進(jìn)行轉(zhuǎn)化一元二次函數(shù)根的分布以及求的導(dǎo)數(shù),研究函數(shù)的的單調(diào)性和極值是解決本題的關(guān)鍵,屬于難題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)證明見解析(2)【解析】(1)由得令可得,進(jìn)而得到,同理,利用數(shù)量積坐標(biāo)計算即可;(2),分,兩種情況討論即可.【詳解】(1)證明:點的坐標(biāo)為.聯(lián)立方程,消去后整理為有,可得,.可得點的坐標(biāo)為.當(dāng)時,可求得點的坐標(biāo)為,.有,故有.(2)若點在軸上方,因為,所以有,由(1)知因為時.由(1)知,由函數(shù)單調(diào)遞增,可得此時.當(dāng)時,由(1)知令由,故當(dāng)時,此時函數(shù)單調(diào)遞增:當(dāng)時,此時函數(shù)單調(diào)遞減,又由,故函數(shù)

15、的最小值,函數(shù)取最小值時,可求得.由知,若點在軸上方,當(dāng)?shù)拿娣e最小時,直線的斜率為.【點睛】本題考查直線與橢圓的位置關(guān)系,涉及到分類討論求函數(shù)的最值,考查學(xué)生的運(yùn)算求解能力,是一道難題.18(1)(2)證明見解析【解析】(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對值三角不等式求得的最小值,利用分析法,結(jié)合基本不等式,證得不等式成立.【詳解】(1),不等式,即或或,即有或或,所以所求不等式的解集為.(2),因為,所以要證,只需證,即證,因為,所以只要證,即證,即證,因為,所以只需證,因為,所以成立,所以.【點睛】本小題主要考查絕對值不等式的解法,考查分析法證明不等式,考查基

16、本不等式的運(yùn)用,屬于中檔題.19(1)(2)為定值【解析】(1)根據(jù)題意,得出,從而得出橢圓的標(biāo)準(zhǔn)方程(2)根據(jù)題意設(shè)直線方程:,因為直線與橢圓相切,這有一個交點,聯(lián)立直線與橢圓方程得,則,解得把和代入,得和 ,的表達(dá)式,比即可得出為定值【詳解】解:(1)依題意,所以橢圓的標(biāo)準(zhǔn)方程為(2)為定值.因為直線分別與直線和直線相交,所以,直線一定存在斜率設(shè)直線:,由得,由,得 把代入,得,把代入,得,又因為,所以,由式,得, 把式代入式,得,即為定值【點睛】本題考查橢圓的定義、方程、和性質(zhì),主要考查橢圓方程的運(yùn)用,考查橢圓的定值問題,考查計算能力和轉(zhuǎn)化思想,是中檔題.20(1);(2)證明見詳解.【

17、解析】(1)將不等式的解集用表示出來,結(jié)合題中的解集,求出的值;(2)利用柯西不等式證明.【詳解】解:(1),因為的解集為,所以,;(2)由(1)由柯西不等式,當(dāng)且僅當(dāng),等號成立【點睛】本題考查了絕對值不等式的解法,利用柯西不等式證明不等式的問題,屬于中檔題.21(1);(2).【解析】(1)正弦定理的邊角轉(zhuǎn)換,以及兩角和的正弦公式展開,特殊角的余弦值即可求出答案;(2)構(gòu)造齊次式,利用正弦定理的邊角轉(zhuǎn)換,得到,結(jié)合余弦定理 得到【詳解】解:(1)由已知,得又,因為 得.(2)又由余弦定理,得【點睛】1.考查學(xué)生對正余弦定理的綜合應(yīng)用;2.能處理基本的邊角轉(zhuǎn)換問題;3.能利用特殊的三角函數(shù)值推特殊角,屬于中檔題22();()的發(fā)分布列為:X2060140400P0.70.10.150.05期望【解析】()由表2可得去各個門診的人次比例可得2000人中各個門診的人數(shù),即可知道去三甲醫(yī)院的總?cè)藬?shù),又有60歲所占的百分比可得60歲以上的人數(shù),進(jìn)而求出任選2人60歲以上的概率;()由去各門診結(jié)算的平均費用及表1所報的百分比可得隨機(jī)變量的可能取值,再由概率可得的分布列,進(jìn)而求出概率【詳解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論