




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知集合,則( )ABCD2已知向量,則與的夾角為( )ABCD3劉徽是我國(guó)魏晉時(shí)期偉大的數(shù)學(xué)家,他在九章算術(shù)中對(duì)勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補(bǔ),各
2、從其類(lèi),因就其余不移動(dòng)也.合成弦方之冪,開(kāi)方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長(zhǎng)為1,其中“正方形為朱方,正方形為青方”,則在五邊形內(nèi)隨機(jī)取一個(gè)點(diǎn),此點(diǎn)取自朱方的概率為( )ABCD4某幾何體的三視圖如圖所示,則該幾何體的體積為( )ABCD5已知平面向量,滿(mǎn)足,且,則( )A3BCD56已知橢圓的短軸長(zhǎng)為2,焦距為分別是橢圓的左、右焦點(diǎn),若點(diǎn)為上的任意一點(diǎn),則的取值范圍為( )ABCD7一個(gè)組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長(zhǎng)為1),則該幾何體的體積是( )ABCD8已知為非零向量,“”為“”的( )A充分不必要條件B充分必要條件C必要不充分條件D既不充分也不必要條件9已
3、知實(shí)數(shù)滿(mǎn)足,則的最小值為( )ABCD10一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( )ABCD11已知集合,若,則實(shí)數(shù)的取值范圍為( )ABCD12如圖,長(zhǎng)方體中,點(diǎn)T在棱上,若平面.則( )A1BC2D二、填空題:本題共4小題,每小題5分,共20分。13曲線(xiàn)在點(diǎn)處的切線(xiàn)方程是_.14已知向量=(4,3),=(6,m),且,則m=_.15三棱錐中,點(diǎn)是斜邊上一點(diǎn).給出下列四個(gè)命題:若平面,則三棱錐的四個(gè)面都是直角三角形;若,平面,則三棱錐的外接球體積為;若,在平面上的射影是內(nèi)心,則三棱錐的體積為2;若,平面,則直線(xiàn)與平面所成的最大角為.其中正確命題的序號(hào)是_(把你認(rèn)為正確命題的序號(hào)都
4、填上)16設(shè)函數(shù),則滿(mǎn)足的的取值范圍為_(kāi).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知函數(shù).(1)設(shè),求函數(shù)的單調(diào)區(qū)間,并證明函數(shù)有唯一零點(diǎn).(2)若函數(shù)在區(qū)間上不單調(diào),證明:.18(12分)一年之計(jì)在于春,一日之計(jì)在于晨,春天是播種的季節(jié),是希望的開(kāi)端某種植戶(hù)對(duì)一塊地的個(gè)坑進(jìn)行播種,每個(gè)坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨(dú)立對(duì)每一個(gè)坑而言,如果至少有兩粒種子發(fā)芽,則不需要進(jìn)行補(bǔ)播種,否則要補(bǔ)播種(1)當(dāng)取何值時(shí),有3個(gè)坑要補(bǔ)播種的概率最大?最大概率為多少?(2)當(dāng)時(shí),用表示要補(bǔ)播種的坑的個(gè)數(shù),求的分布列與數(shù)學(xué)期望19(12分)如圖
5、,設(shè)點(diǎn)為橢圓的右焦點(diǎn),圓過(guò)且斜率為的直線(xiàn)交圓于兩點(diǎn),交橢圓于點(diǎn)兩點(diǎn),已知當(dāng)時(shí),(1)求橢圓的方程.(2)當(dāng)時(shí),求的面積.20(12分)已知函數(shù)(1)若不等式有解,求實(shí)數(shù)的取值范圍;(2)函數(shù)的最小值為,若正實(shí)數(shù),滿(mǎn)足,證明:21(12分)已知函數(shù)(1)若曲線(xiàn)在處的切線(xiàn)為,試求實(shí)數(shù),的值;(2)當(dāng)時(shí),若有兩個(gè)極值點(diǎn),且,若不等式恒成立,試求實(shí)數(shù)m的取值范圍22(10分)函數(shù)(1)證明:;(2)若存在,且,使得成立,求取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1C【解析】求出集合,計(jì)算出和,即可得出結(jié)論.【詳解】,.故選
6、:C.【點(diǎn)睛】本題考查交集和并集的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.2B【解析】由已知向量的坐標(biāo),利用平面向量的夾角公式,直接可求出結(jié)果.【詳解】解:由題意得,設(shè)與的夾角為,由于向量夾角范圍為:,.故選:B.【點(diǎn)睛】本題考查利用平面向量的數(shù)量積求兩向量的夾角,注意向量夾角的范圍.3C【解析】首先明確這是一個(gè)幾何概型面積類(lèi)型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因?yàn)檎叫螢橹旆?,其面積為9,五邊形的面積為,所以此點(diǎn)取自朱方的概率為.故選:C【點(diǎn)睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結(jié)合的思想和運(yùn)算求解的能力,屬于基礎(chǔ)題.4D【解析】結(jié)合三視圖可知,該幾何體
7、的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,則上半部分的半個(gè)圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點(diǎn)睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運(yùn)算求解能力,屬于中檔題.5B【解析】先求出,再利用求出,再求.【詳解】解:由,所以,故選:B【點(diǎn)睛】考查向量的數(shù)量積及向量模的運(yùn)算,是基礎(chǔ)題.6D【解析】先求出橢圓方程,再利用橢圓的定義得到,利用二次函數(shù)的性質(zhì)可求,從而可得的取值范圍.【詳解】由題設(shè)有,故,故橢圓,因?yàn)?/p>
8、點(diǎn)為上的任意一點(diǎn),故.又,因?yàn)?,故,所?故選:D.【點(diǎn)睛】本題考查橢圓的幾何性質(zhì),一般地,如果橢圓的左、右焦點(diǎn)分別是,點(diǎn)為上的任意一點(diǎn),則有,我們常用這個(gè)性質(zhì)來(lái)考慮與焦點(diǎn)三角形有關(guān)的問(wèn)題,本題屬于基礎(chǔ)題.7C【解析】根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個(gè)三棱柱,從而解得幾何體的體積.【詳解】由幾何體的三視圖可得,幾何體的結(jié)構(gòu)是在一個(gè)底面半徑為1的圓、高為2的圓柱中挖去一個(gè)底面腰長(zhǎng)為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【點(diǎn)睛】本題考查了幾何體的三視圖問(wèn)題、組合幾何體的體積問(wèn)題,解題的關(guān)鍵是要能由三視圖還原出組合幾何體,然
9、后根據(jù)幾何體的結(jié)構(gòu)求出其體積.8B【解析】由數(shù)量積的定義可得,為實(shí)數(shù),則由可得,根據(jù)共線(xiàn)的性質(zhì),可判斷;再根據(jù)判斷,由等價(jià)法即可判斷兩命題的關(guān)系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點(diǎn)睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數(shù)量積的應(yīng)用.9A【解析】所求的分母特征,利用變形構(gòu)造,再等價(jià)變形,利用基本不等式求最值.【詳解】解:因?yàn)闈M(mǎn)足,則,當(dāng)且僅當(dāng)時(shí)取等號(hào),故選:【點(diǎn)睛】本題考查通過(guò)拼湊法利用基本不等式求最值.拼湊法的實(shí)質(zhì)在于代數(shù)式的靈活變形,拼系數(shù)、湊常數(shù)是關(guān)鍵.
10、(1)拼湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價(jià)變形;(2)代數(shù)式的變形以拼湊出和或積的定值為目標(biāo)(3)拆項(xiàng)、添項(xiàng)應(yīng)注意檢驗(yàn)利用基本不等式的前提.10B【解析】由題意首先確定幾何體的空間結(jié)構(gòu)特征,然后結(jié)合空間結(jié)構(gòu)特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長(zhǎng)為正方體挖去一個(gè)以為球心以為半徑球體的,如圖,故其表面積為,故選:B.【點(diǎn)睛】(1)以三視圖為載體考查幾何體的表面積,關(guān)鍵是能夠?qū)o出的三視圖進(jìn)行恰當(dāng)?shù)姆治?,從三視圖中發(fā)現(xiàn)幾何體中各元素間的位置關(guān)系及數(shù)量關(guān)系(2)多面體的表面積是各個(gè)面的面積之和;組合體的表面積應(yīng)注意重合部分的處理(3)圓柱、圓錐
11、、圓臺(tái)的側(cè)面是曲面,計(jì)算側(cè)面積時(shí)需要將這個(gè)曲面展為平面圖形計(jì)算,而表面積是側(cè)面積與底面圓的面積之和11A【解析】解一元二次不等式化簡(jiǎn)集合的表示,求解函數(shù)的定義域化簡(jiǎn)集合的表示,根據(jù)可以得到集合、之間的關(guān)系,結(jié)合數(shù)軸進(jìn)行求解即可.【詳解】,.因?yàn)?,所以有,因此?故選:A【點(diǎn)睛】本題考查了已知集合運(yùn)算的結(jié)果求參數(shù)取值范圍問(wèn)題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學(xué)運(yùn)算能力.12D【解析】根據(jù)線(xiàn)面垂直的性質(zhì),可知;結(jié)合即可證明,進(jìn)而求得.由線(xiàn)段關(guān)系及平面向量數(shù)量積定義即可求得.【詳解】長(zhǎng)方體中,點(diǎn)T在棱上,若平面.則,則,所以, 則,所以,故選:D.【點(diǎn)睛】本題考查了直線(xiàn)與平面垂直
12、的性質(zhì)應(yīng)用,平面向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】利用導(dǎo)數(shù)的幾何意義計(jì)算即可.【詳解】由已知,所以,又,所以切線(xiàn)方程為,即.故答案為:【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本計(jì)算能力,要注意在某點(diǎn)處的切線(xiàn)與過(guò)某點(diǎn)的切線(xiàn)的區(qū)別,是一道容易題.148.【解析】利用轉(zhuǎn)化得到加以計(jì)算,得到.【詳解】向量則.【點(diǎn)睛】本題考查平面向量的坐標(biāo)運(yùn)算、平面向量的數(shù)量積、平面向量的垂直以及轉(zhuǎn)化與化歸思想的應(yīng)用.屬于容易題.15【解析】對(duì),由線(xiàn)面平行的性質(zhì)可判斷正確;對(duì),三棱錐外接球可看作正方體的外接球,結(jié)合外接球半徑公式即可求解;對(duì),結(jié)合題意作出圖形,
13、由勾股定理和內(nèi)接圓對(duì)應(yīng)面積公式求出錐體的高,則可求解;對(duì),由動(dòng)點(diǎn)分析可知,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線(xiàn)與平面所成的角最大,結(jié)合幾何關(guān)系可判斷錯(cuò)誤;【詳解】對(duì)于,因?yàn)槠矫妫?,又,所以平面,所以,故四個(gè)面都是直角三角形,正確;對(duì)于,若,平面,三棱錐的外接球可以看作棱長(zhǎng)為4的正方體的外接球,體積為,正確;對(duì)于,設(shè)內(nèi)心是,則平面,連接,則有,又內(nèi)切圓半徑,所以,故,三棱錐的體積為,正確; 對(duì)于,若,平面,則直線(xiàn)與平面所成的角最大時(shí),點(diǎn)與點(diǎn)重合,在中,即直線(xiàn)與平面所成的最大角為,不正確,故答案為:.【點(diǎn)睛】本題考查立體幾何基本關(guān)系的應(yīng)用,線(xiàn)面垂直的性質(zhì)及判定、錐體體積、外接球半徑求解,線(xiàn)面角的求解,屬于中檔
14、題16【解析】當(dāng)時(shí),函數(shù)單調(diào)遞增,當(dāng)時(shí),函數(shù)為常數(shù),故需滿(mǎn)足,且,解得答案.【詳解】,當(dāng)時(shí),函數(shù)單調(diào)遞增,當(dāng)時(shí),函數(shù)為常數(shù),需滿(mǎn)足,且,解得.故答案為:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)單調(diào)性解不等式,意在考查學(xué)生對(duì)于函數(shù)性質(zhì)的靈活運(yùn)用.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(1)為增區(qū)間;為減區(qū)間.見(jiàn)解析(2)見(jiàn)解析【解析】(1)先求得的定義域,然后利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,結(jié)合零點(diǎn)存在性定理判斷出有唯一零點(diǎn).(2)求得的導(dǎo)函數(shù),結(jié)合在區(qū)間上不單調(diào),證得,通過(guò)證明,證得成立.【詳解】(1)函數(shù)的定義域?yàn)椋?,解得為增區(qū)間;由解得為減區(qū)間.下面證明函數(shù)只有一個(gè)零點(diǎn):,所以函
15、數(shù)在區(qū)間內(nèi)有零點(diǎn),函數(shù)在區(qū)間上沒(méi)有零點(diǎn),故函數(shù)只有一個(gè)零點(diǎn).(2)證明:函數(shù),則當(dāng)時(shí),不符合題意;當(dāng)時(shí),令,則,所以在上單調(diào)增函數(shù),而,又區(qū)間上不單調(diào),所以存在,使得在上有一個(gè)零點(diǎn),即,所以,且,即兩邊取自然對(duì)數(shù),得即,要證,即證,先證明:,令,則在上單調(diào)遞增,即,在中令,令,即即,.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和零點(diǎn),考查利用導(dǎo)數(shù)證明不等式,考查分類(lèi)討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.18(1)當(dāng)或時(shí),有3個(gè)坑要補(bǔ)播種的概率最大,最大概率為; (2)見(jiàn)解析.【解析】(1)將有3個(gè)坑需要補(bǔ)種表示成n的函數(shù),考查函數(shù)隨n的變化情況,即可得到n為何值時(shí)有
16、3個(gè)坑要補(bǔ)播種的概率最大(2)n1時(shí),X的所有可能的取值為0,1,2,3,1分別計(jì)算出每個(gè)變量對(duì)應(yīng)的概率,列出分布列,求期望即可【詳解】(1)對(duì)一個(gè)坑而言,要補(bǔ)播種的概率,有3個(gè)坑要補(bǔ)播種的概率為.欲使最大,只需,解得,因?yàn)?,所以?dāng)時(shí),;當(dāng)時(shí),;所以當(dāng)或時(shí),有3個(gè)坑要補(bǔ)播種的概率最大,最大概率為.(2)由已知,的可能取值為0,1,2,3,1.,所以的分布列為01231的數(shù)學(xué)期望.【點(diǎn)睛】本題考查了古典概型的概率求法,離散型隨機(jī)變量的概率分布,二項(xiàng)分布,主要考查簡(jiǎn)單的計(jì)算,屬于中檔題19(1)(2)【解析】(1)先求出圓心到直線(xiàn)的距離為,再根據(jù)得到,解之即得a的值,再根據(jù)c=1求出b的值得到橢圓
17、的方程.(2)先求出,再求得的面積.【詳解】(1)因?yàn)橹本€(xiàn)過(guò)點(diǎn),且斜率.所以直線(xiàn)的方程為,即,所以圓心到直線(xiàn)的距離為, 又因?yàn)椋瑘A的半徑為,所以,即,解之得,或(舍去).所以,所以所示橢圓的方程為 .(2)由(1)得,橢圓的右準(zhǔn)線(xiàn)方程為,離心率,則點(diǎn)到右準(zhǔn)線(xiàn)的距離為,所以,即,把代入橢圓方程得,因?yàn)橹本€(xiàn)的斜率,所以, 因?yàn)橹本€(xiàn)經(jīng)過(guò)和,所以直線(xiàn)的方程為,聯(lián)立方程組得,解得或,所以, 所以的面積.【點(diǎn)睛】本題主要考查直線(xiàn)和圓、橢圓的位置關(guān)系,考查橢圓的方程的求法,考查三角形面積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理計(jì)算能力.20(1)(2)見(jiàn)解析【解析】(1)分離得到,求的最小值即可求得的取值范圍;(2)先求出,得到,利用乘變化即可證明不等式.【詳解】解:(1)設(shè),在上單調(diào)遞減,在上單調(diào)遞增故有解,即的取值范圍為(2),當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即當(dāng)且僅當(dāng),時(shí)等號(hào)成立,即成立【點(diǎn)睛】此題考查不等式的證明,注意定值乘變化的靈活應(yīng)用,屬于較易題目.21(1);(2)【解析】(1)根據(jù)題意,求得的值,根據(jù)切點(diǎn)在切線(xiàn)上以及斜率等于,構(gòu)造方程組求得的值;(2)函數(shù)有兩個(gè)極值點(diǎn),等價(jià)于方程的兩個(gè)正根,不等式恒成立,等價(jià)于恒成立,令,求出導(dǎo)數(shù),判斷單調(diào)性,即可得到的范圍,即的范圍.【詳解】(1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度設(shè)備采購(gòu)軟硬件合同范本
- 2025汽車(chē)融資租賃合同范本
- 2025年抵押房地產(chǎn)反擔(dān)保合同模板
- 感恩教育·勵(lì)志成才主題班會(huì)
- 2025員工勞動(dòng)合同期滿(mǎn)評(píng)定表(模板)
- 《腎與輸尿管結(jié)核》課件
- 護(hù)理實(shí)訓(xùn)個(gè)人總結(jié)
- 教育在個(gè)體心理發(fā)展中的主導(dǎo)作用
- 2025上海市羅涇鎮(zhèn)社區(qū)工作者考試真題
- 血?dú)庑夭∪说淖o(hù)理
- 啤酒采購(gòu)合同協(xié)議書(shū)模板
- 中醫(yī)把脈入門(mén)培訓(xùn)課件
- 高血糖癥的急救與護(hù)理
- 成人失禁性皮炎的預(yù)防與護(hù)理
- 技術(shù)信息收集與分析方法考核試卷
- 小學(xué)2025年國(guó)防教育課程開(kāi)發(fā)計(jì)劃
- 2025屆安徽省示范高中皖北協(xié)作區(qū)高三下學(xué)期一模考試英語(yǔ)試題(原卷版+解析版)
- 義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2024年版)
- 三年級(jí)下冊(cè)面積單位換算練習(xí)100道及答案
- 幼兒園其他形式的教育活動(dòng)課件
- 住宅項(xiàng)目開(kāi)盤(pán)前工作倒排表
評(píng)論
0/150
提交評(píng)論