




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-1Chapter 5Some Important Discrete Probability DistributionsBusiness Statistics:A First Course5th EditionBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-2Learning ObjectivesIn this chapter, you learn: The pr
2、operties of a probability distributionTo calculate the expected value and variance of a probability distributionTo calculate probabilities from binomial and Poisson distributionsHow to use the binomial and Poisson distributions to solve business problemsBusiness Statistics: A First Course, 5e 2009 P
3、rentice-Hall, Inc.Chap 5-3DefinitionsRandom VariablesA random variable represents a possible numerical value from an uncertain event.Discrete random variables produce outcomes that come from a counting process (e.g. number of courses you are taking this semester).Continuous random variables produce
4、outcomes that come from a measurement (e.g. your annual salary, or your weight). Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-4DefinitionsRandom VariablesRandom VariablesDiscrete Random VariableContinuousRandom VariableCh. 5Ch. 6DefinitionsRandom VariablesRandom VariablesDi
5、screte Random VariableContinuousRandom VariableCh. 5Ch. 6DefinitionsRandom VariablesRandom VariablesDiscrete Random VariableContinuousRandom VariableCh. 5Ch. 6Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-5Discrete Random VariablesCan only assume a countable number of values
6、Examples: Roll a die twiceLet X be the number of times 4 occurs (then X could be 0, 1, or 2 times)Toss a coin 5 times. Let X be the number of heads (then X = 0, 1, 2, 3, 4, or 5)Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-6Probability Distribution For A Discrete Random Var
7、iableA probability distribution for a discrete random variable is a mutually exclusive listing of all possible numerical outcomes for that variable and a probability of occurrence associated with each outcome.Number of Classes TakenProbability20.230.440.2450.16Business Statistics: A First Course, 5e
8、 2009 Prentice-Hall, Inc.Chap 5-7Experiment: Toss 2 Coins. Let X = # heads.TTExample of a Discrete Random Variable Probability Distribution4 possible outcomesTTHHHHProbability Distribution 0 1 2 X X Value Probability Probability Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-
9、8Discrete Random VariablesExpected Value (Measuring Center) Expected Value (or mean) of a discrete random variable (Weighted Average)Example: Toss 2 coins, X = # of heads, compute expected value of X: E(X) = (0)(0.25) + (1)(0.50) + (2)(0.25) X P(X)Business Statistics: A First Course, 5e 2009 Prentic
10、e-Hall, Inc.Chap 5-9Variance of a discrete random variableStandard Deviation of a discrete random variablewhere:E(X) = Expected value of the discrete random variable X Xi = the ith outcome of XP(Xi) = Probability of the ith occurrence of XDiscrete Random Variables Measuring DispersionBusiness Statis
11、tics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-10Example: Toss 2 coins, X = # heads, compute standard deviation (recall E(X) = 1)Discrete Random Variables Measuring Dispersion(continued)Possible number of heads = 0, 1, or 2Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap
12、 5-11Probability DistributionsContinuous Probability DistributionsBinomialPoissonProbability DistributionsDiscrete Probability DistributionsNormalCh. 5Ch. 6Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-12Binomial Probability DistributionA fixed number of observations, ne.g.,
13、 15 tosses of a coin; ten light bulbs taken from a warehouseEach observation is categorized as to whether or not the “event of interest” occurrede.g., head or tail in each toss of a coin; defective or not defective light bulbSince these two categories are mutually exclusive and collectively exhausti
14、veWhen the probability of the event of interest is represented as , then the probability of the event of interest not occurring is 1 - Constant probability for the event of interest occurring () for each observationProbability of getting a tail is the same each time we toss the coinBusiness Statisti
15、cs: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-13Binomial Probability Distribution(continued)Observations are independentThe outcome of one observation does not affect the outcome of the otherTwo sampling methods deliver independenceInfinite population without replacementFinite population wit
16、h replacementBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-14Possible Applications for the Binomial DistributionA manufacturing plant labels items as either defective or acceptableA firm bidding for contracts will either get a contract or notA marketing research firm receive
17、s survey responses of “yes I will buy” or “no I will not”New job applicants either accept the offer or reject itBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-15The Binomial DistributionCounting TechniquesSuppose the event of interest is obtaining heads on the toss of a fair
18、coin. You are to toss the coin three times. In how many ways can you get two heads?Possible ways: HHT, HTH, THH, so there are three ways you can getting two heads.This situation is fairly simple. We need to be able to count the number of ways for more complicated situations.Business Statistics: A Fi
19、rst Course, 5e 2009 Prentice-Hall, Inc.Chap 5-16Counting TechniquesRule of CombinationsThe number of combinations of selecting X objects out of n objects is where:n! =(n)(n - 1)(n - 2) . . . (2)(1)X! = (X)(X - 1)(X - 2) . . . (2)(1) 0! = 1 (by definition)Business Statistics: A First Course, 5e 2009
20、Prentice-Hall, Inc.Chap 5-17Counting TechniquesRule of CombinationsHow many possible 3 scoop combinations could you create at an ice cream parlor if you have 31 flavors to select from?The total choices is n = 31, and we select X = 3.Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Cha
21、p 5-18P(X) = probability of X events of interest in n trials, with the probability of an “event of interest” being for each trial X = number of “events of interest” in sample, (X = 0, 1, 2, ., n) n = sample size (number of trials or observations) = probability of “event of interest” P(X)nX !nX(1-)Xn
22、X!()!=-Example: Flip a coin four times, let x = # heads:n = 41 - X = 0, 1, 2, 3, 4Binomial Distribution FormulaBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-19Example: Calculating a Binomial ProbabilityWhat is the probability of one success in five observations if the probab
23、ility of an event of interest is .1? X = 1, n = 5, and Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-20The Binomial DistributionExampleSuppose the probability of purchasing a defective computer is 0.02. What is the probability of purchasing 2 defective computers in a group o
24、f 10? X = 2, n = 10, and = .02Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-21The Binomial DistributionShapen = 5 0.2.4.6012345XP(X)n = 5 .2.4.6012345XP(X)0The shape of the binomial distribution depends on the values of and nHere, n = 5 and = .1Here, n = 5 and = .5Business S
25、tatistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-22The Binomial DistributionUsing Binomial Tablesn = 10 x=.20=.25=.30=.35=.40=.45=.500123456789100.10740.26840.30200.20130.08810.02640.00550.00080.00010.00000.00000.05630.18770.28160.25030.14600.05840.01620.00310.00040.00000.00000.02820.121
26、10.23350.26680.20010.10290.03680.00900.00140.00010.00000.01350.07250.17570.25220.23770.15360.06890.02120.00430.00050.00000.00600.04030.12090.21500.25080.20070.11150.04250.01060.00160.00010.00250.02070.07630.16650.23840.23400.15960.07460.02290.00420.00030.00100.00980.04390.11720.20510.24610.20510.117
27、20.04390.00980.0010109876543210=.80=.75=.70=.65=.60=.55=.50 xExamples: n = 10, = .35, x = 3: P(x = 3|n =10, = .35) = .2522n = 10, = .75, x = 2: P(x = 2|n =10, = .75) = .0004Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-23Binomial Distribution CharacteristicsMeanVariance and
28、Standard DeviationWheren = sample size = probability of the event of interest for any trial(1 ) = probability of no event of interest for any trialBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-24The Binomial DistributionCharacteristicsn = 5 0.2.4.6012345XP(X)n = 5 .2.4.60123
29、45XP(X)0ExamplesBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-25Using Excel For TheBinomial DistributionBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-26The Poisson DistributionDefinitionsYou use the Poisson distribution when you are interested in the
30、 number of times an event occurs in a given area of opportunity.An area of opportunity is a continuous unit or interval of time, volume, or such area in which more than one occurrence of an event can occur. The number of scratches in a cars paintThe number of mosquito bites on a personThe number of
31、computer crashes in a day Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-27The Poisson DistributionApply the Poisson Distribution when:You wish to count the number of times an event occurs in a given area of opportunityThe probability that an event occurs in one area of oppor
32、tunity is the same for all areas of opportunity The number of events that occur in one area of opportunity is independent of the number of events that occur in the other areas of opportunityThe probability that two or more events occur in an area of opportunity approaches zero as the area of opportu
33、nity becomes smallerThe average number of events per unit is (lambda)Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-28Poisson Distribution Formulawhere:X = number of events in an area of opportunity = expected number of eventse = base of the natural logarithm system (2.71828.
34、)Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-29Poisson Distribution CharacteristicsMeanVariance and Standard Deviationwhere = expected number of eventsBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-30Using Poisson TablesX0.100.200.300.400.500.600.700.800.90012345670.90480.0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣州華立科技職業(yè)學(xué)院《論文寫作與指導(dǎo)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣西科技大學(xué)《形勢與政策講座Ⅰ》2023-2024學(xué)年第二學(xué)期期末試卷
- 應(yīng)對(duì)保安證考試的有效習(xí)題及答案
- 河南省許昌平頂山兩市2024-2025學(xué)年高三年級(jí)調(diào)研測試(數(shù)學(xué)試題)試題含解析
- 設(shè)計(jì)制作建筑模型(教學(xué)設(shè)計(jì))-2024-2025學(xué)年科學(xué)三年級(jí)上冊人教鄂教版
- 江西省吉水縣外國語學(xué)校2025年數(shù)學(xué)四下期末調(diào)研試題含解析
- 山西省新絳縣第二中學(xué)2025年高三新時(shí)代NT抗疫愛心卷(Ⅱ)歷史試題含解析
- 綏化市重點(diǎn)中學(xué)2025年高三下學(xué)期第二次階段性考試語文試題試卷含解析
- 保安職業(yè)道德規(guī)范試題及答案
- 沈陽音樂學(xué)院《MATLAB語言及其應(yīng)用(一)》2023-2024學(xué)年第二學(xué)期期末試卷
- 技術(shù)分紅協(xié)議書范本合同6篇
- 2025年國網(wǎng)陜西省電力有限公司招聘720人(第一批)筆試參考題庫附帶答案詳解
- 2025天津市建筑安全員-C證考試題庫
- 2025年廣東省高職單招計(jì)算機(jī)類職業(yè)技能測試題(附答案)
- 2025年河南應(yīng)用技術(shù)職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試題庫含答案
- 2025年北京控股集團(tuán)招聘筆試參考題庫含答案
- 2025年國航機(jī)務(wù)系統(tǒng)AMECO工程師崗位校園招聘筆試參考題庫附帶答案詳解
- 新生兒病理性黃疸病例討論
- 護(hù)士條例及護(hù)理相關(guān)法律法規(guī)
- 【物理】同一直線上二力的合成 2024-2025學(xué)年人教版物理八年級(jí)下冊
- 人教版PEP小學(xué)五年級(jí)英語下冊全冊教案(含計(jì)劃)
評(píng)論
0/150
提交評(píng)論