高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)第一章_第1頁(yè)
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)第一章_第2頁(yè)
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)第一章_第3頁(yè)
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)第一章_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、高中數(shù)學(xué) 知識(shí)點(diǎn)總結(jié)第一章 集合與函數(shù)概念【1.1.1】集合的含義與表示 (1)集合的概念 集合中的元素具有確定性、互異性和無(wú)序性.(2)常用數(shù)集及其記法 N表示自然數(shù)集,N* 或N+ 表示正整數(shù)集,Z表示整數(shù)集,Q表示有理數(shù)集,R表示實(shí)數(shù)集.(3)集合與元素間的關(guān)系 對(duì)象a與集合M的關(guān)系是,或者,兩者必居其一.(4)集合的表示法 自然語(yǔ)言法:用文字?jǐn)⑹龅男问絹?lái)描述集合.列舉法:把集合中的元素一一列舉出來(lái),寫在大括號(hào)內(nèi)表示集合.描述法:x|x具有的性質(zhì),其中x為集合的代表元素.圖示法:用數(shù)軸或韋恩圖來(lái)表示集合.(5)集合的分類含有有限個(gè)元素的集合叫做有限集.含有無(wú)限個(gè)元素的集合叫做無(wú)限集.不含

2、有任何元素的集合叫做空集().【1.1.2】集合間的基本關(guān)系(6)子集、真子集、集合相等名稱記號(hào)意義性質(zhì)示意圖子集 (或A中的任一元素都屬于B(1)AA(2)(3)若且,則(4)若且,則或真子集AB (或BA),且B中至少有一元素不屬于A(1)(A為非空子集)(2)若且,則集合相等A中的任一元素都屬于B,B中的任一元素都屬于A(1)AB(2)BA(7)已知集合有個(gè)元素,則它有個(gè)子集,它有個(gè)真子集,它有個(gè)非空子集,它有非空真子集.【1.1.3】集合的基本運(yùn)算(8)交集、并集、補(bǔ)集名稱記號(hào)意義性質(zhì)示意圖交集且(1)(2)(3) 并集或(1)(2)(3) 補(bǔ)集1 2 【補(bǔ)充知識(shí)】含絕對(duì)值的不等式與一

3、元二次不等式的解法(1)含絕對(duì)值的不等式的解法不等式解集或把看成一個(gè)整體,化成,型不等式來(lái)求解(2)一元二次不等式的解法判別式二次函數(shù) 的圖象一元二次方程的根 (其中無(wú)實(shí)根的解集或的解集1.2函數(shù)及其表示【1.2.1】函數(shù)的概念(1)函數(shù)的概念設(shè)、是兩個(gè)非空的數(shù)集,如果按照某種對(duì)應(yīng)法則,對(duì)于集合中任何一個(gè)數(shù),在集合中都有唯一確定的數(shù)和它對(duì)應(yīng),那么這樣的對(duì)應(yīng)(包括集合,以及到的對(duì)應(yīng)法則)叫做集合到的一個(gè)函數(shù),記作函數(shù)的三要素:定義域、值域和對(duì)應(yīng)法則只有定義域相同,且對(duì)應(yīng)法則也相同的兩個(gè)函數(shù)才是同一函數(shù)(2)區(qū)間的概念及表示法設(shè)是兩個(gè)實(shí)數(shù),且,滿足的實(shí)數(shù)的集合叫做閉區(qū)間,記做;滿足的實(shí)數(shù)的集合叫做

4、開(kāi)區(qū)間,記做;滿足,或的實(shí)數(shù)的集合叫做半開(kāi)半閉區(qū)間,分別記做,;滿足的實(shí)數(shù)的集合分別記做注意:對(duì)于集合與區(qū)間,前者可以大于或等于,而后者必須 (3)求函數(shù)的定義域時(shí),一般遵循以下原則:是整式時(shí),定義域是全體實(shí)數(shù)是分式函數(shù)時(shí),定義域是使分母不為零的一切實(shí)數(shù)是偶次根式時(shí),定義域是使被開(kāi)方式為非負(fù)值時(shí)的實(shí)數(shù)的集合對(duì)數(shù)函數(shù)的真數(shù)大于零,當(dāng)對(duì)數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時(shí),底數(shù)須大于零且不等于1中,零(負(fù))指數(shù)冪的底數(shù)不能為零若是由有限個(gè)基本初等函數(shù)的四則運(yùn)算而合成的函數(shù)時(shí),則其定義域一般是各基本初等函數(shù)的定義域的交集對(duì)于求復(fù)合函數(shù)定義域問(wèn)題,一般步驟是:若已知的定義域?yàn)?,其?fù)合函數(shù)的定義域應(yīng)由不等式解出

5、對(duì)于含字母參數(shù)的函數(shù),求其定義域,根據(jù)問(wèn)題具體情況需對(duì)字母參數(shù)進(jìn)行分類討論由實(shí)際問(wèn)題確定的函數(shù),其定義域除使函數(shù)有意義外,還要符合問(wèn)題的實(shí)際意義(4)求函數(shù)的值域或最值求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問(wèn)的角度不同求函數(shù)值域與最值的常用方法: 觀察法:對(duì)于比較簡(jiǎn)單的函數(shù),我們可以通過(guò)觀察直接得到值域或最值配方法:將函數(shù)解析式化成含有自變量的平方式與常數(shù)的和,然后根據(jù)變量的取值范圍確定函數(shù)的值域或最值判別式法:若函數(shù)可以化成一個(gè)系數(shù)含有的關(guān)于的二次方程,則在

6、時(shí),由于為實(shí)數(shù),故必須有,從而確定函數(shù)的值域或最值不等式法:利用基本不等式確定函數(shù)的值域或最值換元法:通過(guò)變量代換達(dá)到化繁為簡(jiǎn)、化難為易的目的,三角代換可將代數(shù)函數(shù)的最值問(wèn)題轉(zhuǎn)化為三角函數(shù)的最值問(wèn)題反函數(shù)法:利用函數(shù)和它的反函數(shù)的定義域與值域的互逆關(guān)系確定函數(shù)的值域或最值數(shù)形結(jié)合法:利用函數(shù)圖象或幾何方法確定函數(shù)的值域或最值函數(shù)的單調(diào)性法【1.2.2】函數(shù)的表示法(5)函數(shù)的表示方法表示函數(shù)的方法,常用的有解析法、列表法、圖象法三種 解析法:就是用數(shù)學(xué)表達(dá)式表示兩個(gè)變量之間的對(duì)應(yīng)關(guān)系列表法:就是列出表格來(lái)表示兩個(gè)變量之間的對(duì)應(yīng)關(guān)系圖象法:就是用圖象表示兩個(gè)變量之間的對(duì)應(yīng)關(guān)系(6)映射的概念設(shè)、

7、是兩個(gè)集合,如果按照某種對(duì)應(yīng)法則,對(duì)于集合中任何一個(gè)元素,在集合中都有唯一的元素和它對(duì)應(yīng),那么這樣的對(duì)應(yīng)(包括集合,以及到的對(duì)應(yīng)法則)叫做集合到的映射,記作給定一個(gè)集合到集合的映射,且如果元素和元素對(duì)應(yīng),那么我們把元素叫做元素的象,元素叫做元素的原象1.3函數(shù)的基本性質(zhì)【1.3.1】單調(diào)性與最大(小)值(1)函數(shù)的單調(diào)性定義及判定方法函數(shù)的性質(zhì)定義圖象判定方法函數(shù)的單調(diào)性如果對(duì)于屬于定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量的值x1、x2,當(dāng)x1 x2時(shí),都有f(x1)f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是增函數(shù)(1)利用定義(2)利用已知函數(shù)的單調(diào)性(3)利用函數(shù)圖象(在某個(gè)區(qū)間圖 象上升為增

8、)(4)利用復(fù)合函數(shù)如果對(duì)于屬于定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量的值x1、x2,當(dāng)x1f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù)(1)利用定義(2)利用已知函數(shù)的單調(diào)性(3)利用函數(shù)圖象(在某個(gè)區(qū)間圖象下降為減)(4)利用復(fù)合函數(shù)在公共定義域內(nèi),兩個(gè)增函數(shù)的和是增函數(shù),兩個(gè)減函數(shù)的和是減函數(shù),增函數(shù)減去一個(gè)減函數(shù)為增函數(shù),減函數(shù)減去一個(gè)增函數(shù)為減函數(shù)yxo對(duì)于復(fù)合函數(shù),令,若為增,為增,則為增;若為減,為減,則為增;若為增,為減,則為減;若為減,為增,則為減(2)打“”函數(shù)的圖象與性質(zhì)分別在、上為增函數(shù),分別在、上為減函數(shù)(3)最大(小)值定義 一般地,設(shè)函數(shù)的定義域?yàn)椋绻嬖趯?shí)數(shù)

9、滿足:(1)對(duì)于任意的, 都有;(2)存在,使得那么,我們稱是函數(shù) 的最大值,記作 一般地,設(shè)函數(shù)的定義域?yàn)?,如果存在?shí)數(shù)滿足:(1)對(duì)于任意的,都有;(2)存在,使得那么,我們稱是函數(shù)的最小值,記作【1.3.2】奇偶性(4)函數(shù)的奇偶性定義及判定方法函數(shù)的性 質(zhì)定義圖象判定方法函數(shù)的奇偶性如果對(duì)于函數(shù)f(x)定義域內(nèi)任意一個(gè)x,都有f(x)=f(x),那么函數(shù)f(x)叫做奇函數(shù)(1)利用定義(要先判斷定義域是否關(guān)于原點(diǎn)對(duì)稱)(2)利用圖象(圖象關(guān)于原點(diǎn)對(duì)稱)如果對(duì)于函數(shù)f(x)定義域內(nèi)任意一個(gè)x,都有f(x)=f(x),那么函數(shù)f(x)叫做偶函數(shù)(1)利用定義(要先判斷定義域是否關(guān)于原點(diǎn)對(duì)稱)(2)利用圖象(圖象關(guān)于y軸對(duì)稱)若函數(shù)為奇函數(shù),且在處有定義,則奇函數(shù)在軸兩側(cè)相對(duì)稱的區(qū)間增減性相同,偶函數(shù)在軸兩側(cè)相對(duì)稱的區(qū)間增減性相反在公共定義域內(nèi),兩個(gè)偶函數(shù)(或奇函數(shù))的和(或差)仍是偶函數(shù)(或奇函數(shù)),兩個(gè)偶函數(shù)(或奇函數(shù))的積(或商)是偶函數(shù),一個(gè)偶函數(shù)與一個(gè)奇函數(shù)的積(或商)是奇函數(shù)補(bǔ)充知識(shí)函數(shù)的圖象(1)作圖利用描點(diǎn)法作圖: 確定函數(shù)的定義域; 化解函數(shù)解析式; 討論函數(shù)的性質(zhì)(奇偶性、單調(diào)性); 畫出函數(shù)的圖象利用基本函數(shù)圖象的變換作圖:要準(zhǔn)確記憶一次函數(shù)、二次函數(shù)、反比例函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等各種基本初等函數(shù)的圖象平移變換 伸縮變換 對(duì)稱

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論