版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、 ANewLow-TemperatureSynthesisRouteofMethanol:CatalyticEffectoftheAlcoholicSolvent1.IntroductionGas-phasemethanolisbeingproducedindustriallyby30-40milliontonperyeararoundtheworld,fromCO/CO2/H2atatemperaturerangeof523-573Kandapressurerangeof50-100bar,usingcopper-zinc-basedoxidecatalyst.Undertheseextre
2、mereactionconditions,theefficiencyofmethanolsynthesisisseverelylimitedbythermodynamicsasmethanolsynthesisisanextremelyexothermicreaction1.,2Forexample,at573Kand50bar,itiscalculatedbythermodynamicsthattheoreticmaximumone-passCOconversionisaround20%forflow-typereactorwhenH2/CO=2.Alsoitisreportedthatth
3、eone-passCOconversionintheindustrialICIprocessisbetween15and25%,evenifH2-richgasisused(H2/CO=5,523-573K).3Therefore,developingalow-temperatureprocessformethanolsynthesis,whichwillgreatlyreducetheproductioncostandutilizethethermodynamicadvantageatlowtemperature,ischallengingandimportant.3Ifconversion
4、ishighenoughinmethanolsynthesis,recyclingoftheunreactedsyngascanbeomittedandaircanbeuseddirectlyinthereformer,insteadofpureoxygen.Generally,low-temperaturemethanolsynthesisisconductedintheliquidphase.TheBNLmethodfirstreportedbyBrookhavenNationalLaboratory(BNL),usingaverystrongbasecatalyst(mixtureofN
5、aH,acetate),realizedthiscontinuousliquid-phasesynthesisinasemi-batchreactorat373-403Kand10-50bar.However,aremarkabledrawbackofthisprocessisthatevenatraceamountofcarbondioxideandwaterinthefeedgasorreactionsystemwilldeactivatethestronglybasiccatalystsoon,4,5resultinginhighcostcomingfromthecompletepuri
6、ficationofthesyngasfromreformer,andreactivationofthedeactivatedcatalyst.Thisisthemainreasonstoppingthecommercializationofthislow-temperaturemethanolsynthesismethod.Liquid-phasemethanolsynthesisfrompureCOandH2viatheformationofmethylformatehasbeenwidelystudied,wherecarbonylationofmethanolandsuccessive
7、hydrogenationofmethylformatewereconsideredastwomainstepsofthereaction.6-13co+ch3oh-hcooch3HCOOCHj+2比皿叫ZCHOH匚0+2H2-CH3OHPalekaretal.usedapotassiummethoxide/copperchromitecatalystsystemtoconductthisliquid-phasereactioninasemi-batchreactorat373-453Kand30-65bar.6AlthoughthemechanismofBNLmethodisstillcon
8、troversial,alotofresearchersthinkthatitissimilartothemechanismabove.3However,similartothatintheBNLmethod,inthisprocessCO2andH2Oactaspoisonstothestrongbasecatalyst(RONa,ROK)aswellandmustbecompletelyremovedfromsyngas,makingcommercializationoflow-temperaturemethanolsynthesisdifficult.Tposedanewmethodof
9、low-temperaturesynthesisofmethanolfromCO2/H2onaCu-basedoxidecatalystusingethanolasakindof“catalyticsolvent”,bywhichmethanolwasproducedinabatchreactorat443Kand30bar.14Thisnewprocessconsistedofthreesteps:(1)formicacidsynthesisfromCO2andH2;(2)esterificationofformicacidbyethanoltoethylformate;and(3)hydr
10、ogenationofethylformatetomethanolandethanol.Consideringthatthewater-gasshiftreactionatlowertemperatureiseasilycon-ductedonCu/ZnOcatalyst,15-25anewrouteofmethanolsynthesisfromCO/H2containingCO2,asamorepracticalwayofmethanolsynthesis,isproposed.Itconsistsofthefollowingfundamentalsteps:(i)co+h2o=co2+h2
11、C02+H2+ROH=HCOOR十H20HCOOR十2H2=CH3OH十ROHCO十2H2=CHjOHAsformicacidwasnotdetectedintheproducts,wesuggestedthereactionpathasstep(2).Tsubakietal.investigatedthesynthesisreactionofmethanolfromCO/CO2/H2,usingethanolasreactionmediuminabatchreactorandfoundhighselectivityformethanolformationattemperatureaslowa
12、s423-443K.26Inthiscommunication,thecatalyticpromotingeffectsofdifferentalcoholsonthesynthesisofmethanolfromCO/CO2/H2onCu/ZnOcatalystwereinvestigated.Highyieldsofmethanolwererealizedwhilesomealcoholswereutilized.2.ExperimentalSectionThecatalystwaspreparedbytheconventionalcoprecipitationmethod.Anaqueo
13、ussolutioncontainingcopper,zincnitrates(Cu/Zninmolarratio=1),andanaqueoussolutionofsodiumcarbonatewereaddedsimultaneouslywithconstantstirringto300mLofwater.TheprecipitationtemperatureandpHvalueweremaintainedat338Kand8.3-8.5,respectively.Theresultingprecipitatewasfiltratedandwashedwithdistilledwater,
14、followedbydryingat383Kfor24handcalcinationat623Kfor1h.Thisprecursorwasthenreducedbyaflowof5%hydrogeninnitrogenat473Kfor13handsuccessivelypassivatedby2%oxygendilutedbyargon.TheBETsurfaceareaforthecatalystwas59.4m2/g.ThecatalysthereisdenotedasCu/ZnO(A).Intheexperimentsusingreactantgasofdifferentcompos
15、ition,acommerciallyavailableICIcatalyst(ICI51-2)wasalsousedthroughthesamereductionpretreatment,denotedhereasCu/ZnO(B).TheBETsurfaceareaforCu/ZnO(B)was20.1m2/g.Toconfirmtheinfluenceofthecatalystpassivation,atailor-madereactorwhereinsitureductionofthecatalystbeforeethanolintroductionwasavailable,wasus
16、edtoperformthecatalystreductionandreaction;butnodifferenceinreactionbehaviorwasobserved.Sousingpassivatedcatalystreducedseparatelyhadnoinfluence.Inthereaction,aclosedtypicalbatchreactorwithinnervolumeof80mLandastirrerwasused.Thestirringspeedofthepropeller-typestirrerwascarefullycheckedtoeliminatethe
17、diffusionresistancebetweengas,liquid,andsolidphases.Adesiredamountofsolventandcatalystwasaddedintothereactor.Thenthereactorwasclosedandtheairinsidethereactorwaspurgedbyreactantgas.ApressurizedmixturegasofCO(31.90%),CO2(5.08%),andH2(60.08%)wasintroducedandthenthereactiontookplaceatthedesiredtemperatu
18、re.Arof2.94%inthefeedgaswasusedasinnerstandard.Afterreaction,thereactorwascooledbyice-waterandthenthegasinsidethereactorwasreleasedveryslowlyandcollectedinagas-bagforanalysis.Thestandardreactionconditionswereasfollows:catalyst=1.0g;solvent=20mL;reactiontemperature=443K;initialpressure=30bar.Atthesta
19、ndardreactiontemperatureof443K,thepressurewascalculatedtobe55bar,includingthevaporpressureofabout10barfromethanol.27AllproductswereconfirmedonGC-MS(ShimadzuGCMS1600)andanalyzedbytwogaschromatographs(ShimadzuGC-8A/FIDforliquidproducts,andGLScienceGC-320/TCDforgasproducts).Conversionoryieldwascalculat
20、edonthebasisofallcarboninthefeedgas.Intheexperimentsusingreactantgasofdifferentcomposition,whereCu/ZnO(B)wasemployed,aconventionalmagneticallystirredbatchreactorwasused.Thereactionconditionswere:temperature=423K;initialpressure=30bar;reactiontime=2h;catalyst0.2g;alcohol(ethanol):5mL.3.ResultsandDisc
21、ussionTheanalysisresultsshowedthatonlyCOandCO2existedinthepostreactiongasandonlymethanolandthecorrespondingHCOORweretheobtainedliquidproducts.Table1listedtheresultsof13kindsofalcoholsusedasreactionsolventseparatelyunderthesamereactionconditionswhereCu/ZnO(A)wasemployed.Forcomparison,theresultsinthec
22、asesofnosolventandcyclohexanewerealsolistedinTable1.Thetotalconversionwasthesumoftheyieldsofbothmethanolandester.Fromthetable,noactivityappearedwhencyclohexanewasusedornosolventwasused.However,inmostreactions,whenalcoholwasused,highactivitywasobserved,suggestingthecatalyticpromotingeffectofalcoholat
23、lowtemperature.Thesealcoholsloweredthereactiontemperaturesignificantlyandacceleratedthereaction,butdidnotaffectstoichiometryoftheoverallreactionasinsteps(1)-(3)listedabove.Table1.EffectsofDifferentAlcoholsontheSynthesisofMethanolfromCO/COa/Hzsolventyieldofmethanol%)yieldofHCOOR(%)totalconversion(%)r
24、atioofROHtofeedgascarbon*(niol/niol)none0000cyclohexane0000ethanol10.221.1311.3512.811-propanol9.270.169.439.942-propanol13.1910.2723.469.811-butanol8.9708.978.162-butanol11.2610.2221.488.14iso-butanol8.1908.198.13f-butanol5.8305.837.961-pentanol7.7407.746.912-pentanol3.728.0911.816.91cyclopentaiiol
25、6.7106.717.081-hexanol7.1707.175.96ethyleneglycol00013.40benzylalcohol0007.225Temperature=443K;Initialpressure=30bar;reactiontime=2h;CtVZnO(A)=1.00g;alcohol20mL;feedgasCO/CO2/H2/Ar=31.90/5.08/60.08/2.94;stirringspeedofthepropeller-tpestirrer=1250rpm.bRatioofmolarnumberof20niLROHtototalmolarnumbersof
26、COandCO2inthefeedgasat293Iand30barbeforereaction.Forthesix1-alcoholsfromethanolthrough1-hexanoltobenzylalcohol,theconversionstomethanolandthecorrespondingester(HCOOR)decreasedwithincreasingcarbonnumberofalcoholmolecule.Noesterwasobservedforthesefirstalcoholswhentheircarbonnumberwasmorethanthree.This
27、isinaccordancewiththeratesequenceofdifferent1-alcoholsintheesterificationreaction,28providingtheevidencethatstep(2)wasrate-determining.Astheconcentrationofester,HCOOR,wassolow,step(3)wasbelievedtobequickerthanstep(2).Itshouldbenotedthat,forallalcohols,theyhadalargemolarratioofROHtothetotalcarboninth
28、efeedgas;thedifferencecomingfromtheinfluenceofmolarnumbersofdifferentalcoholicsolventscanbeignored.Concerningthealcoholswiththesamecarbonnumberbutdifferentstructure,thesecondalcoholhadhighestactivity,asshowninthereactionsin2-propanol,2-bu-tanol,and2-pentanolseparately.2-Propanolexhibitedhighestactiv
29、ityamongthesethree2-alcohols.Forexample,at443K,thetotalconversioninthesolventof2-propanolwashighupto23.46%,amongwhichmethanoland2-propylformateyieldsaccountedfor13.19%and10.27%,respectively.Foralcoholswithlargerspatialobstacle,thereactionhadloweractivity,asshowninthecasesofiso-butanol,tert-butylalco
30、hol,andcyclopentanol.Inaddition,forethyleneglycolandbenzylalcohol,noactivitywasobserved.Butthereasonisnotveryclearnow.Onthereasonsfordifferentbehaviorsofthealcoholswiththesamecarbonnumberbutdifferentstructure,itisconsideredthatdifferentalcoholtypeaffectedstep(2)byboththeelectroniceffectandspatialeff
31、ect.For1-butanol,theelectrondensityofoxygenatominROHislower.Asaresult,ROHattackedthecarbonatomofHCOOCu,theintermediateofstep(2),moreslowly.Butthespatialobstacleof1-butanolisthesmallestamongallbutanols,andthisisfavorabletothenucleophilicattackintheesterificationreaction.Ontheotherhand,iso-butanolhash
32、ighelectronicdensityinitsoxygenatomandthisshouldacceleratethereaction.Butitslargemolecularvolumebecameaseverespatialobstacleinthenucleophilicattack.Soitsesterificationratewaslow.Asabalancedeffectbetweenelectronicfactorandspatialfactor,2-butanolexhibitedhighestactivityamong4butanols,intherate-determi
33、ningstep(2).Astheoppositeexample,tert-butylalcoholgavetheyieldofmethanolaslowas5.83%here.Itshouldbepointedoutthattheaccumulatedester(HCOOR)canbeeasilytransferredtomethanolandROHunderhigherH2partialpressure.Twoexperimentswereconductedtodemonstratethis.Onewasthehydrogenationofethylformateinabatchreact
34、orandtheotherwasthehydrogenationof2-butylformateinaflow-typesemi-batchautoclavereactor.Forthefirstone,thereactionconditionsweresimilartothoseusedinthesynthesisreactionofmethanoldescribedabove.AmixturegasofH2andN2withatotalinitialpressureof30bar(20barH2and10barN2)wasusedasfeedgas.Ethylformate(1.5mL)a
35、nd18.5mLofcyclohexaneweremixedandpouredintothereactorinsteadof20mLofalcohol.After2hreaction,thetotalconversionofethylformatewas98.20%andtheyieldofmethanolwas83.69%.MethylformateandCOwerebyproducts.Methylformatemightcomefromthetransesterificationofethylformateandthemethanolproduced.COmightcomefromthe
36、decompositionofethylformate.Forthelatterexperiment,7.5mLof2-butylformate(5timesamountinvolumeofethylformateusedinthefirstexperiment)and12.5mLofcyclohexanewerepouredinthereactor.AflowofpureH2(20mL/min,30bar)wasusedasflowinggas.After8hcontinuousreactionat443K,96.23%of2-butylformatewastransferredtometh
37、anoland2-butanol.Thetotalconversionswerehighwhile2-alcoholswereutilized.Buttheyieldstoesterwerealsohigh,especiallyfor2-pentanol.Itisreferredthatstep(3)abovewasslowerif2-alcoholswereused.Inothercases,therateofstep(3)wasmuchfasterthanthatofstep(2),resultinginthedisappearanceorverylowyieldofthecorrespo
38、ndingesters.IfthewaterwasaddedtoethanolwiththesamemolaramountasthatofCO2inthefeedgasunderstandardconditions,andthesameexperimentwasconducted,similarresultswereobtained.Waterdidnotaffectthereactionbehavioratthesereactionconditions.Fromthereactionmechanismabove,waterwasonlyanintermediate,similartother
39、oleofCO2insteps(1)-(3).Table2.EffectofReactantGasCompositioninaMagneticallyStirredAutoclaveexpt=no.CO(bar)h2(bar)co2(bar)ethylformatevield(駒nietlianolvield3totalyield(%)110000002102000.3000.30腫9.6181.50.280.150.4347.5184.50.430.170.605050.400.953Temperature=423I;initialpressure=30bar;react
40、iontime=2h;Cii/ZnO(B)=0.2g;alcohol(etlianol):5niL.*Argonof0.9barisalsoincluded.InTable2,theinfluencefromvariousreactantgascompositionwasinvestigatedat423KwherecatalystCu/ZnO(B)wasused.ItisclearthatthetotalreactionrateincreasedwiththeincreasingofCO2contentinthesyngas.ThereactionofCO2+H2exhibitedthehi
41、ghestreactionrate.ItseemsthatmethanolsynthesisratewasfasterfromCO2+H2thanfromCO+H2,supportingthatstep(1)inthereactionmechanismwasreasonable.ItisinterestingthatpureCOdidnotreact,indicatingcarbonylationofalcoholtoesterimpossible.WhileusingpureCO+H2asreactantgas,ethylformateformedbutmethanolwasnotobtai
42、ned.ThereactionratewasratherlowerthanthatofCO2-containedsyngas.ItishardtodeterminethereactionrouteofpureCO+H2now,asCOinsertiontoethanoltoformanesterwasexcluded.Maybewatercontainedintheethanol(about100-150ppm)reactedwithCOtoformCO2andfulfilledsteps(1)and(2).4.ConclusionsTheuseofalcohol,especially2-al
43、cohols,asacatalyticsolventinthesynthesisofmethanolfromCO/CO2/H2,notonlyrealizedanewlow-temperaturemethanolsynthesismethod,butalsoovercamedrawbacksoftheBNLmethodandotherlow-temperaturemethanolsynthesismethods.Thiseffectfromaccompanyingalcoholicsolventdecreasedgreatlythetemperatureandpressureofthesynt
44、hesisreactiononCu/ZnOsolidcatalyst,viaanewreactionpath.Thismethodisverypromisingtobecomeanewtechnologyforlow-temperaturemethanolsynthesiswherepurificationofsyngasisnotnecessary.Sincethereactionemployedconventionalsolidcatalyst,verymildreactionconditions,andsyngascontainingCO2andH2O,itmightbeapromisi
45、ngpracticalmethodformethanolsynthesisatlowtemperature.Infact,whentheamount(weight)ofcatalystwasincreased,theconversionwasincreasedlinearlyinourexperiments.50-60%conversionwasrealizedinaflow-typesemi-batchreactor,aslow-temperaturemethanolsynthesishasnothermodynamiclimitation.Butinthehigh-temperaturer
46、eaction,eventhecatalystweightisenhanced,conversioncannotbeincreasedduetointrinsicthermodynamicslimitation.Inthefuture,abubble-columnreactorisconsideredforlarge-scalesynthesis.AcknowledgmentResearchforFutureProgramfromJapanSocietyforthePromotionofScience(JSPS)isgreatlyacknowledged(JSPS-RFTF98P01001).EF0100395References1Herman,R.G.;Simmons,G.W.;Klier,K.Stud.Surf.Sci.Catal.1981,7,475.2Graaf,G.H.;Sijtsema,P.;Stamhuis,E.J.;Oosten,G.Chem.Eng.Sci.1986,41,2883.3Marchionna,M.;Lami,M.;Galleti,A.CHEM
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版石灰石供應(yīng)合同模板
- 二零二五年度應(yīng)急管理及救援裝備租賃合同3篇
- 2025年度人工智能專利池共享與許可合同3篇
- 2025年度城市公共交通設(shè)施建設(shè)合同規(guī)范3篇
- 二零二四年商業(yè)地產(chǎn)項(xiàng)目新型業(yè)態(tài)招商代理服務(wù)合同樣本3篇
- 年度芳香除臭化學(xué)品:空氣清新劑產(chǎn)業(yè)分析報(bào)告
- 2025年新型材料現(xiàn)貨購銷合同標(biāo)準(zhǔn)范本3篇
- 2024-2025學(xué)年高中歷史第二單元古希臘和古羅馬的政治制度單元總結(jié)學(xué)案含解析岳麓版必修1
- 2025年度校園配送服務(wù)食品安全快速檢測質(zhì)量管理體系建設(shè)合同3篇
- 2025年度人工智能算法工程師保密協(xié)議及知識(shí)產(chǎn)權(quán)保護(hù)合同3篇
- 曙光磁盤陣列DS800-G10售前培訓(xùn)資料V1.0
- 寺廟祈?;顒?dòng)方案(共6篇)
- 2025年病案編碼員資格證試題庫(含答案)
- 企業(yè)財(cái)務(wù)三年戰(zhàn)略規(guī)劃
- 提高膿毒性休克患者1h集束化措施落實(shí)率
- 山東省濟(jì)南市天橋區(qū)2024-2025學(xué)年八年級(jí)數(shù)學(xué)上學(xué)期期中考試試題
- 主播mcn合同模板
- 新疆2024年中考數(shù)學(xué)試卷(含答案)
- 2024測繪個(gè)人年終工作總結(jié)
- DB11 637-2015 房屋結(jié)構(gòu)綜合安全性鑒定標(biāo)準(zhǔn)
- 制造業(yè)生產(chǎn)流程作業(yè)指導(dǎo)書
評(píng)論
0/150
提交評(píng)論