版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2022人教版七年級下冊數(shù)學優(yōu)質公開課獲獎教案設計文案 2022人教版七年級下冊數(shù)學教案文案1 教學目的 通過分析儲蓄中的數(shù)量關系、商品利潤等有關知識,經(jīng)歷運用方程解決實際問題的過程,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學模型。 重點、難點 1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。 2.難點:找出能表示整個題意的等量關系。 教學過程 一、復習 1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金年利率年數(shù) 本利和=本金利息年數(shù)+本金 2.商品利潤等有關知識。 利潤=售價-成本 ; =商品利潤率 二、新授 問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,
2、今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元? 利息-利息稅=48.6 可設小明爸爸前年存了x元,那么二年后共得利息為 2.43%X2,利息稅為2.43%X220% 根據(jù)等量關系,得 2.43%x2-2.43%x220%=48.6 問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得 2.43%x280%=48.6 解方程,得 x=1250 例1.一家商店將某種服裝按成本價提高40%后標價,又以8折 (即按標價的80%)優(yōu)惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元? 大家想一想這
3、15元的利潤是怎么來的? 標價的80%(即售價)-成本=15 若設這種服裝每件的成本是x元,那么 每件服裝的標價為:(1+40%)x 每件服裝的實際售價為:(1+40%)x80% 每件服裝的利潤為:(1+40%)x80%-x 由等量關系,列出方程: (1+40%)x80%-x=15 解方程,得 x=125 答:每件服裝的成本是125元。 三、鞏固練習 教科書第15頁,練習1、2。 四、小結 當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數(shù)學問題,然后分析數(shù)學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據(jù)題意首先尋找“
4、等量關系”。 五、作業(yè) 教科書第16頁,習題6.3.1,第4、5題。 2022人教版七年級下冊數(shù)學教案文案2 教學目的 借助“線段圖”分析復雜的行程問題中的數(shù)量關系,從而建立方程解決實際問題,發(fā)展分析問題,解決問題的能力,進一步體會方程模型的作用。 重點、難點 1.重點:列一元一次方程解決有關行程問題。 2.難點:間接設未知數(shù)。 教學過程 一、復習 1.列一元一次方程解應用題的一般步驟和方法是什么? 2.行程問題中的基本數(shù)量關系是什么? 路程=速度時間 速度=路程 / 時間 二、新授 例1.小張和父親預定搭乘家門口的公共汽車趕往火車站,去家鄉(xiāng)看望爺爺,在行駛了三分之一路程后,估計繼續(xù)乘公共汽車
5、將會在火車開車后半小時到達火車站,隨即下車改乘出租車,車速提高了一倍,結果趕在火車開車前15分鐘到達火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠? 畫“線段圖”分析, 若直接設元,設小張家到火車站的路程為x千米。 1.坐公共汽車行了多少路程?乘的士行了多少路程? 2.乘公共汽車用了多少時間,乘出租車用了多少時間? 3.如果都乘公共汽車到火車站要多少時間? 4,等量關系是什么? 如果設乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。 可設公共汽車從小張家到火車站要x小時。 設未知數(shù)的方法不同,所列方程的復雜程度一般也不同,因
6、此在設未知數(shù)時要有所選擇。 三、鞏固練習 教科書第17頁練習1、2。 四、小結 有關行程問題的應用題常見的一個數(shù)量關系:路程=速度時間,以及由此導出的其他關系。如何選擇設未知數(shù)使方程較為簡單呢?關鍵是找出較簡捷地反映題目全部含義的等量關系,根據(jù)這個等量關系確定怎樣設未知數(shù)。 四、作業(yè) 教科書習題6.3.2,第1至5題。 2022人教版七年級下冊數(shù)學教案文案3 教學目標 1.使學生正確理解數(shù)軸的意義,掌握數(shù)軸的三要素; 2.使學生學會由數(shù)軸上的已知點說出它所表示的數(shù),能將有理數(shù)用數(shù)軸上的點表示出來; 3.使學生初步理解數(shù)形結合的思想方法. 教學重點和難點 重點:初步理解數(shù)形結合的思想方法,正確掌
7、握數(shù)軸畫法和用數(shù)軸上的點表示有理數(shù). 難點:正確理解有理數(shù)與數(shù)軸上點的對應關系. 課堂教學過程 設計 一、從學生原有認知結構提出問題 1.小學里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎? 2.用“射線”能不能表示有理數(shù)?為什么? 3.你認為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢? 待學生回答后,教師指出,這就是我們本節(jié)課所要學習的內容數(shù)軸. 二、講授新課 讓學生觀察掛圖放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數(shù),根據(jù)溫度計的液面的不同位置就可以讀出不同的數(shù),從而得到所測的溫度.在0上10個刻度,表示10;在0下5個刻度,表示
8、-5. 與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(邊說邊畫): 1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當于溫度計上的0); 2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0以上為正,0以下為負); 3.選取適當?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3, 提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉
9、幾個數(shù)) 在此基礎上,給出數(shù)軸的定義,即規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸. 進而提問學生:在數(shù)軸上,已知一點P表示數(shù)-5,如果數(shù)軸上的原點不選在原來位置,而改選在另一位置,那么P對應的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢? 通過上述提問,向學生指出:數(shù)軸的三要素原點、正方向和單位長度,缺一不可. 三、運用舉例 變式練習 例1 畫一個數(shù)軸,并在數(shù)軸上畫出表示下列各數(shù)的點: 例2 指出數(shù)軸上A,B,C,D,E各點分別表示什么數(shù). 課堂練習 示出來. 2.說出下面數(shù)軸上A,B,C,D,O,M各點表示什么數(shù)? 最后引導學生得出結論:正有理數(shù)可用原點右邊的點表示,負有理數(shù)
10、可用原點左邊的點表示,零用原點表示. 四、小結 指導學生閱讀教材后指出:數(shù)軸是非常重要的數(shù)學工具,它使數(shù)和直線上的點建立了對應關系,它揭示了數(shù)和形之間的內在聯(lián)系,為我們研究問題提供了新的方法. 本節(jié)課要求同學們能掌握數(shù)軸的三要素,正確地畫出數(shù)軸,在此還要提醒同學們,所有的有理數(shù)都可用數(shù)軸上的點來表示,但是反過來不成立,即數(shù)軸上的點并不是都表示有理數(shù),至于數(shù)軸上的哪些點不能表示有理數(shù),這個問題以后再研究. 五、作業(yè) 1.在下面數(shù)軸上: (1)分別指出表示-2,3,-4,0,1各數(shù)的點. (2)A,H,D,E,O各點分別表示什么數(shù)? 2.在下面數(shù)軸上,A,B,C,D各點分別表示什么數(shù)? 3.下列各
11、小題先分別畫出數(shù)軸,然后在數(shù)軸上畫出表示大括號內的一組數(shù)的點: (1)-5,2,-1,-3,0; (2)-4,2.5,-1.5,3.5; 課堂教學設計說明 從學生已有知識、經(jīng)驗出發(fā)研究新問題,是我們組織教學的一個重要原則.小學里曾學過利用射線上的點來表示數(shù),為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出數(shù)軸的概念.教學中,數(shù)軸的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識.直線、數(shù)軸都是非常抽象的數(shù)學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的.例如,向學生提問:在數(shù)軸上對應一億萬分之一的點,你能畫
12、出來嗎?它是不是存在等. 2022人教版七年級下冊數(shù)學教案文案4 絕對值 教學目標 1,掌握絕對值的概念,有理數(shù)大小比較法則. 2,學會絕對值的計算,會比較兩個或多個有理數(shù)的大小. 3.體驗數(shù)學的概念、法則來自于實際生活,滲透數(shù)形結合和分類思想. 教學難點 兩個負數(shù)大小的比較 知識重點 絕對值的概念 教學過程(師生活動) 設計理念 設置情境 引入課題 星期天黃老師從學校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規(guī)定向東為正,用有理數(shù)表示黃老師兩次所行的路程;如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升? 學生
13、思考后,教師作如下說明: 實際生活中有些問題只關注量的具體值,而與相反 意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關; 觀察并思考:畫一條數(shù)軸,原點表示學校,在數(shù)軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離. 學生回答后,教師說明如下: 數(shù)軸上表示數(shù)的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數(shù)的正負性無關; 一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記做|a| 例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0 這個例子中,第一問是相反意義的量,用正負 數(shù)表示,后一問
14、的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數(shù)值,而并不關注它們所表示的意義.為引入絕對值概念做準備.并使學生體 驗數(shù)學知識與生活實際的聯(lián)系. 因為絕對值概念的幾何意義是數(shù)形轉化的典型 模型,學生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準備. 合作交流 探究規(guī)律 例1求下列各數(shù)的絕對值,并歸納求有理數(shù)a的絕對 有什么規(guī)律?、 -3,5,0,+58,0.6 要求小組討論,合作學習. 教師引導學生利用絕對值的意義先求出答案,然后觀察原數(shù)與它的絕對值這兩個數(shù)據(jù)的特征,并結合相反數(shù)的意義,最后總結得出求絕對值法則(見教科書第15頁). 鞏固練習:教科書第15
15、頁練習. 其中第1題按法則直接寫出答案,是求絕對值的基本訓練;第2題是對相反數(shù)和絕對值概念進行辨別,對學生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學生體會出不同說法之間的區(qū)別. 求一個數(shù)的絕時值的法則,可看做是絕對值概 念的一個應用,所以安排此例. 學生能做的盡量讓學生完成,教師在教學過程中只是組織者.本著這個理念,設計這個討論. 結合實際發(fā)現(xiàn)新知 引導學生看教科書第16頁的圖,并回答相關問題: 把14個氣溫從低到高排列; 把這14個數(shù)用數(shù)軸上的點表示出來; 觀察并思考:觀察這些點在數(shù)軸上的位置,并思考它們與溫度的高低之間的關系,由此你覺得兩個有理數(shù)可以比較大小嗎? 應怎樣比較兩個
16、數(shù)的大小呢? 學生交流后,教師總結: 14個數(shù)從左到右的順序就是溫度從低到高的順序: 在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù). 在上面14個數(shù)中,選兩個數(shù)比較,再選兩個數(shù)試試,通過比較,歸納得出有理數(shù)大小比較法則 想象練習:想象頭腦中有一條數(shù)軸,其上有兩個點,分別表示數(shù)一100和一90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數(shù)的大小之間的關系. 要求學生在頭腦中有清晰的圖形. 讓學生體會到數(shù)學的規(guī)定都來源于生活,每一種規(guī)定都有它的合理性 數(shù)在大小比較法則第2點學生較難掌握,要從絕對值的意義和數(shù)軸上的數(shù)左小右大這方面結合起來來了解,所以配置
17、想象練習 ,加強數(shù)與形的想象。 課堂練習 例2,比較下列各數(shù)的大小(教科書第17頁例) 比較大小的過程要緊扣法則進行,注意書寫格式 練習:第18頁練習 小結與作業(yè) 課堂小結 怎樣求一個數(shù)的絕對值,怎樣比較有理數(shù)的大小? 本課作業(yè) 1, 必做題:教產(chǎn)書第19頁習題1,2,第4,5,6,10 2, 選做題:教師自行安排 本課教育評注(課堂設計理念,實際教學效果及改進設想) 1,情景的創(chuàng)設出于如下考慮:體現(xiàn)數(shù)學知識與生活實際的緊密聯(lián)系,讓學生在 這些熟悉的日常生活情境中獲得數(shù)學體驗,不僅加深對絕對值的理解,更感受到學 習絕對值概念的必要性和激發(fā)學習的興趣.教材中數(shù)的絕對值概念是根據(jù)幾何意 義來定義的
18、(其本質是將數(shù)轉化為形來解釋,是難點),然后通過練習歸納出求有理 數(shù)的絕對值的規(guī)律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象, 學生不易接受. 2, 一個數(shù)絕對值的法則,實際上是絕對值概念的直接應用,也體現(xiàn)著分類的數(shù)學思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學重點;從知識的發(fā)展和學生的能力培養(yǎng)角度來看,教師應更重視學生的自主學習和探究的過程,關注學生的思維,做好教學的組織和引導,留給學生足夠的空間。 3, 有理數(shù)大小的比較法則是大小規(guī)定的直接歸納,其中第(2)條學生較難理解,教學 中要結合絕對值的意義和規(guī)定:“在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到 大的順序”
19、,幫助學生建立“數(shù)軸上越左邊的點到原點的距離越大,所以表示的數(shù)越小”這個數(shù)形結合的模型.為此設置了想象練習. 4,本節(jié)課的內容包括絕對值的概念和數(shù)的絕對值的求法、有理數(shù)大小比較的法則,教 學內容很多,學生接受起來可能會有困難,建議把有理數(shù)的大小比較移到下節(jié)課教學。 2022人教版七年級下冊數(shù)學教案文案5 教學目的 1.理解用一元一次方程解工程問題的本質規(guī)律;通過對“工程問題”的分析進一步培養(yǎng)學生用代數(shù)方法解決實際問題的能力。 2.理解和掌握基本的數(shù)學知識、技能、數(shù)學思想方法,獲得廣泛的數(shù)學活動經(jīng)驗,提高解決問題的能力。 重點、難點 重點:工程中的工作量、工作的效率和工作時間的關系。 難點:把全部工作量看作“1”。 教學過程 一、復習提問 1.一件工作,如果甲單獨做2小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度物流倉儲用地承包租賃合同(2024版)4篇
- 2025年度新型儲藏室與車位投資合作合同模板4篇
- 2025年度新能源汽車充電樁承債式公司股權轉讓合同4篇
- 2025年度文化演藝場館承包經(jīng)營合同4篇
- 2025年度土地整治與生態(tài)修復項目承包合同4篇
- 2024通信線路施工及改造分包合同范本3篇
- 2025年度生態(tài)環(huán)保工程承包商工程款支付擔保協(xié)議4篇
- 2025年度歷史文化街區(qū)保護項目房屋拆遷補償合同2篇
- 2025年度住宅小區(qū)配套停車場車位代理銷售協(xié)議4篇
- 2025年度星級酒店廚師團隊合作協(xié)議4篇
- 土壤農(nóng)化分析課件
- 小區(qū)大型團購活動策劃
- NEC(新生兒壞死性小腸結腸炎)92273
- 2023年租賃風控主管年度總結及下一年展望
- 開關插座必看的七個安全隱患范文
- 高分子成型加工課件
- 消防救援-低溫雨雪冰凍惡劣天氣條件下災害防范及救援行動與安全
- 硅石項目建議書范本
- 概率論在金融風險評估中的應用研究
- 住院醫(yī)療互助給付申請書
- 外墻外保溫工程檢驗批質量驗收記錄表
評論
0/150
提交評論