版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、北師大版七年級(jí)下冊(cè)數(shù)學(xué)重難點(diǎn)突破知識(shí)點(diǎn)梳理及重點(diǎn)題型鞏固練習(xí)簡(jiǎn)單的軸對(duì)稱及利用軸對(duì)稱進(jìn)行設(shè)計(jì)(基礎(chǔ))知識(shí)講解【學(xué)習(xí)目標(biāo)】1理解軸對(duì)稱變換,能按要求作出簡(jiǎn)單平面圖形經(jīng)軸對(duì)稱后的圖形;能利用軸對(duì)稱變換,設(shè)計(jì)一些圖案,解決簡(jiǎn)單的實(shí)際問(wèn)題.2. 探索等腰三角形的性質(zhì)定理以及判定定理,能熟練運(yùn)用它們進(jìn)行推理和計(jì)算3. 會(huì)作線段的垂直平分線和角的平分線,探索線段垂直平分線和角平分線的性質(zhì)定理與判定定理,能用它們解決幾何計(jì)算與證明題.4積累探究圖形性質(zhì)的活動(dòng)經(jīng)驗(yàn),發(fā)展空間觀念,同時(shí)能運(yùn)用軸對(duì)稱的性質(zhì),解決簡(jiǎn)單的數(shù)學(xué)問(wèn)題或?qū)嶋H問(wèn)題,提高分析問(wèn)題和解決問(wèn)題的能力【要點(diǎn)梳理】要點(diǎn)一、作軸對(duì)稱圖形和對(duì)稱軸1.做軸對(duì)
2、稱圖形 可以根據(jù)兩個(gè)圖形成軸對(duì)稱的性質(zhì),先確定圖形關(guān)鍵點(diǎn)關(guān)于已知直線的對(duì)稱點(diǎn),然后依順序連接點(diǎn)即可得已知圖形關(guān)系直線的對(duì)稱圖形.要點(diǎn)詮釋:已知一點(diǎn)和直線確定其對(duì)稱點(diǎn)的作法如下:過(guò)這一點(diǎn)作已知直線的垂線,得垂線段,再以垂足為起點(diǎn),在直線的另一旁截取一點(diǎn),使這條線段的長(zhǎng)與垂線段等長(zhǎng),截取的這點(diǎn)就是已知點(diǎn)關(guān)于直線的對(duì)稱點(diǎn).2.對(duì)稱軸的作法 若兩個(gè)圖形成軸對(duì)稱,其對(duì)稱軸就是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線因此只要找到一對(duì)對(duì)應(yīng)點(diǎn),再作出連接它們的線段的垂直平分線就可以得到這兩個(gè)圖形的對(duì)稱軸軸對(duì)稱圖形的對(duì)稱軸作法相同要點(diǎn)詮釋:在軸對(duì)稱圖形和成軸對(duì)稱的兩個(gè)圖形中,對(duì)應(yīng)線段、對(duì)應(yīng)角相等.成軸對(duì)稱的兩個(gè)圖形,
3、如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)一定在對(duì)稱軸上.如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱.要點(diǎn)二、等腰三角形的性質(zhì)及判定1.等腰三角形的性質(zhì)性質(zhì)1:等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱“等邊對(duì)等角”)性質(zhì)2:等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合(簡(jiǎn)稱“三線合一”)要點(diǎn)詮釋:(1)性質(zhì)1證明同一個(gè)三角形中的兩角相等.是證明角相等的一個(gè)重要依據(jù)(2)性質(zhì)2用來(lái)證明線段相等,角相等,垂直關(guān)系等(3)等腰三角形底邊上的高(頂角平分線或底邊上的中線)所在直線是它的對(duì)稱軸,通常情況只有一條對(duì)稱軸,等邊三角形有三條對(duì)稱軸2.等腰三角形的判定如果一個(gè)三
4、角形中有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱“等角對(duì)等邊”). 要點(diǎn)詮釋:等腰三角形的判定是證明兩條線段相等的重要定理,是將三角形中的角的相等關(guān)系轉(zhuǎn)化為邊的相等關(guān)系的重要依據(jù).等腰三角形的性質(zhì)定理和判定定理是互逆定理.要點(diǎn)三、線段垂直平分線性質(zhì)定理及其逆定理線段垂直平分線(也稱中垂線)的性質(zhì)定理是: 線段的垂直平分線上的點(diǎn)到這條線段的兩個(gè)端點(diǎn)的距離相等;逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上要點(diǎn)詮釋: 性質(zhì)定理的前提條件是線段已經(jīng)有了中垂線,從而可以得到線段相等;逆定理則是在結(jié)論中確定線段被垂直平分,一定要注意著兩者的區(qū)別,在使用這兩個(gè)定理時(shí)不要混淆了.要點(diǎn)四
5、、角平分線性質(zhì)定理及其逆定理角平分線性質(zhì)定理是:角平分線上的任意一點(diǎn),到角兩邊的距離相等;逆定理:在角的內(nèi)部到角兩邊的距離相等的點(diǎn)在角平分線上.要點(diǎn)詮釋:性質(zhì)定理的前提條件是已經(jīng)有角平分線了,即角被平分了;逆定理則是在結(jié)論中確定角被平分,一定要注意著兩者的區(qū)別,在使用這兩個(gè)定理時(shí)不要混淆了.要點(diǎn)五、利用軸對(duì)稱性質(zhì)進(jìn)行簡(jiǎn)單設(shè)計(jì)欣賞現(xiàn)實(shí)生活中的軸對(duì)稱圖形,能利用軸對(duì)稱進(jìn)行一些圖案設(shè)計(jì),體驗(yàn)軸對(duì)稱在現(xiàn)實(shí)生活中的廣泛應(yīng)用和豐富的文化價(jià)值,感受生活中的數(shù)學(xué)美.【典型例題】類型一、作軸對(duì)稱圖形及對(duì)稱軸1、已知如下圖,求作ABC關(guān)于對(duì)稱軸l的軸對(duì)稱圖形ABC【思路點(diǎn)撥】分別作出點(diǎn)B與點(diǎn)C關(guān)于直線l的對(duì)稱點(diǎn),
6、然后連接AB,AC,BC即可得到ABC關(guān)于對(duì)稱軸l的軸對(duì)稱圖形ABC【答案與解析】解:【總結(jié)升華】作一個(gè)圖形的對(duì)稱圖形就是作各個(gè)頂點(diǎn)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn),把作對(duì)稱圖形的問(wèn)題可以轉(zhuǎn)化為作點(diǎn)的對(duì)稱點(diǎn)的問(wèn)題2、畫出如圖中的各圖的對(duì)稱軸【思路點(diǎn)撥】根據(jù)軸對(duì)稱圖形的性質(zhì),找到圖形中的一組對(duì)應(yīng)點(diǎn),連接對(duì)稱圖形的兩個(gè)對(duì)應(yīng)點(diǎn),作這個(gè)線段的垂直平分線就是這個(gè)圖形的對(duì)稱軸【答案與解析】解:如圖所示:【總結(jié)升華】本題考查了對(duì)稱軸的畫法解答此題要明確對(duì)稱軸所具有的性質(zhì):對(duì)稱軸是任意一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線舉一反三:【變式】在下圖中,畫出ABC關(guān)于直線MN的對(duì)稱圖形.【答案】為所求.類型二、等腰三角形的性質(zhì)與判定3
7、、(2015秋廣西期末)已知:如圖所示,在ABC中,AB=AD=DC,BAD=26,求B和C的度數(shù)【思路點(diǎn)撥】由題意,在ABC中,AB=AD=DC,BAD=26根據(jù)等腰三角形的性質(zhì)可以求出底角,再根據(jù)三角形內(nèi)角與外角的關(guān)系即可求出內(nèi)角C【答案與解析】解:在ABC中,AB=AD=DC,AB=AD,在三角形ABD中,B=ADB=(18026)=77,又AD=DC,在三角形ADC中,C=77=38.5【總結(jié)升華】本題考查等腰三角形的性質(zhì)及應(yīng)用等腰三角形兩底角相等,還考查了三角形的內(nèi)角和定理及內(nèi)角與外角的關(guān)系利用三角形的內(nèi)角求角的度數(shù)是一種常用的方法,要熟練掌握舉一反三:【變式】如圖,已知AD是ABC
8、的中線,BE交AC于E,交AD于F,且AEEF求證:ACBF【答案】 證明:延長(zhǎng)AD至點(diǎn)G,使DGAD,連接BG.ABCDABCDEFG 類型三、線段垂直平分線性質(zhì)定理及其逆定理4、如圖,ABC中,BAC=110,DE、FG分別為AB、AC的垂直平分線,E、G分別為垂足(1)求DAF的度數(shù);(2)如果BC=10cm,求DAF的周長(zhǎng)【思路點(diǎn)撥】1)根據(jù)三角形內(nèi)角和定理可求B+C;根據(jù)垂直平分線性質(zhì),DA=BD,F(xiàn)A=FC,則EAD=B,F(xiàn)AC=C,得出DAF=BACEADFAC=110(B+C)求出即可(2)由(1)中得出,AD=BD,AF=FC,即可得出DAF的周長(zhǎng)為BD+FC+DF=BC,即
9、可得出答案【答案與解析】解:(1)設(shè)B=x,C=yBAC+B+C=180,110+B+C=180,x+y=70AB、AC的垂直平分線分別交BA于E、交AC于G,DA=BD,F(xiàn)A=FC,EAD=B,F(xiàn)AC=CDAF=BAC(x+y)=11070=40(2)AB、AC的垂直平分線分別交BA于E、交AC于G,DA=BD,F(xiàn)A=FC,DAF的周長(zhǎng)為:AD+DF+AF=BD+DF+FC=BC=10(cm)【總結(jié)升華】此題考查了線段垂直平分線的性質(zhì)、三角形內(nèi)角和定理以及等腰三角形的性質(zhì)注意掌握垂直平分線上任意一點(diǎn),到線段兩端點(diǎn)的距離相等定理的應(yīng)用,注意數(shù)形結(jié)合思想與整體思想的應(yīng)用.舉一反三【變式】(201
10、5徐州)如圖,在ABC中,C=31,ABC的平分線BD交AC于點(diǎn)D,如果DE垂直平分BC,那么A= 【答案】87解:在ABC中,C=31,ABC的平分線BD交AC于點(diǎn)D,DBE=ABC=(18031A)=(149A),DE垂直平分BC,BD=DC,DBE=C,DBE=ABC=(149A)=C=31,A=87故答案為:875、如圖,ABC中,ACB=90,AD平分BAC,DEAB于E求證:直線AD是線段CE的垂直平分線【思路點(diǎn)撥】由于DEAB,易得AED=90=ACB,而AD平分BAC,易知DAE=DAC,又因?yàn)锳D=AD,利用AAS可證AEDACD,那么AE=AC,而AD平分BAC,利用等腰三
11、角形三線合一定理可知ADCE,即得證【答案與解析】證明:DEAB,AED=90=ACB,又AD平分BAC,DAE=DAC,AD=AD,AEDACD,AE=AC,AD平分BAC,ADCE,即直線AD是線段CE的垂直平分線【總結(jié)升華】本題考查了線段垂直平分的定義、全等三角形的判定和性質(zhì)、等腰三角形三線合一定理,解題的關(guān)鍵是證明AE=AC舉一反三【變式】如圖,已知ABC,求作一點(diǎn)P,使P到A的兩邊的距離相等,且PA=PB,下列確定P點(diǎn)的方法正確的是()AP是A與B兩角平分線的交點(diǎn)BP為A的角平分線與AB的垂直平分線的交點(diǎn)CP為AC、AB兩邊上的高的交點(diǎn)DP為AC、AB兩邊的垂直平分線的交點(diǎn)【答案】;
12、類型四、角平分線性質(zhì)定理及其逆定理6、如圖,ABC的角平分線BM,CN相交于O求證:點(diǎn)O到三邊AB、BC、CA的距離相等【思路點(diǎn)撥】作OD、OE、OF分別垂直于三邊AB、BC、CA,D、E、F為垂足,根據(jù)角平分線性質(zhì)可得OD=OE,OF=OE,OD=OE=OF【答案與解析】證明:作OD、OE、OF分別垂直于三邊AB、BC、CA,D、E、F為垂足,BM為ABC的角平分線,ODAB,OEBC,OD=OE(角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等)同理可證:OF=OEOD=OE=OF即點(diǎn)O到三邊AB、BC、CA的距離相等【總結(jié)升華】此題主要考查角平分線的性質(zhì):角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等正確作出
13、輔助線是解答本題的關(guān)鍵舉一反三【變式】如圖:ABC的兩個(gè)外角平分線交于點(diǎn)P,則下列結(jié)論正確的是()PA=PC BP平分ABC P到AB,BC的距離相等 BP平分APCABCD【答案】;7、已知如圖:AD、BE是ABC的兩條角平分線,相交于P點(diǎn)求證:P點(diǎn)在C的平分線上【思路點(diǎn)撥】首先過(guò)點(diǎn)P作PMAB,PNBC,PQAC,垂足分別為M、N、Q,然后證明PQ=PN即可【答案與解析】證明:如圖,過(guò)點(diǎn)P作PMAB,PNBC,PQAC,垂足分別為M、N、Q,P在BAC的平分線AD上,PM=PQ,P在ABC的平分線BE上,PM=PN,PQ=PN,點(diǎn)P在C的平分線上【總結(jié)升華】本題主要考查了角平分線上的點(diǎn)到角兩邊的距離相等的性質(zhì)用此性質(zhì)證明它的逆定理成立角平分
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新疆警察學(xué)院《人機(jī)交互界面設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年蛋糕店創(chuàng)業(yè)計(jì)劃
- 2024年大學(xué)生學(xué)生助理工作總結(jié)8篇
- 2024年初中學(xué)校學(xué)生宿舍管理制度
- 《政府的權(quán)力用》課件
- 商鋪退房合同范例
- 奶茶店轉(zhuǎn)讓意向合同范例
- 土頭運(yùn)輸合同范例
- 口罩用品采購(gòu)合同范例
- 公開招標(biāo)簽訂合同范例
- 新起點(diǎn)人教版小學(xué)英語(yǔ)二年級(jí)上冊(cè)教案-(全冊(cè))
- 醫(yī)療器械質(zhì)量管理體系文件管理制度
- 解密市場(chǎng)營(yíng)銷(雙語(yǔ))智慧樹知到期末考試答案2024年
- 高考真題 選擇性必修3《邏輯與思維》-2024年高考政治一輪復(fù)習(xí)選擇題+主觀題(新教材新高考)(解析版)
- 湖北省荊州市荊州八縣市區(qū)2023-2024學(xué)年高一上學(xué)期1月期末聯(lián)考物理試題(原卷版)
- 藥店法律法規(guī)應(yīng)用與合規(guī)培訓(xùn)
- 小程序商場(chǎng)方案
- 班組年終總結(jié)
- 小學(xué)科學(xué)人教鄂教版五年級(jí)下冊(cè)全冊(cè)教案2023春
- 項(xiàng)目復(fù)盤工作報(bào)告(模版)課件
- 《無(wú)線局域網(wǎng)》課件
評(píng)論
0/150
提交評(píng)論