版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項1考生要認真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1函數(shù)的部分圖像如圖所示,若,點的坐標為,若將函數(shù)向右平移個單位后函數(shù)圖像關于軸對稱,則的最小值為( )ABCD2橢圓是日常生活中常見的圖形,在圓柱形的玻璃杯中盛半杯水,將杯體傾斜一個角度,水面的邊界即是橢圓.現(xiàn)有一高度為12厘米,底面半
2、徑為3厘米的圓柱形玻璃杯,且杯中所盛水的體積恰為該玻璃杯容積的一半(玻璃厚度忽略不計),在玻璃杯傾斜的過程中(杯中的水不能溢出),杯中水面邊界所形成的橢圓的離心率的取值范圍是( )ABCD3音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學趣味著名數(shù)學家傅立葉研究了樂聲的本質,他證明了所有的樂聲都能用數(shù)學表達式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項是基本音,其余的為泛音由樂聲的數(shù)學表達式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波下列函數(shù)中不能與函數(shù)構成樂音的是( )ABCD4如果實數(shù)滿足條件,那么的最大值為( )ABCD5已知點(m,8)在冪函數(shù)
3、的圖象上,設,則( )AbacBabcCbcaDacb62019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院??蒲蟹疥?他們是由軍事科學院、國防大學、國防科技大學聯(lián)合組建若已知甲、乙、丙三人來自上述三所學校,學歷分別有學士、碩士、博士學位.現(xiàn)知道:甲不是軍事科學院的;來自軍事科學院的不是博士;乙不是軍事科學院的;乙不是博士學位;國防科技大學的是研究生則丙是來自哪個院校的,學位是什么( )A國防大學,研究生B國防大學,博士C軍事科學院,學士D國防科技大學
4、,研究生7設等差數(shù)列的前n項和為,若,則( )ABC7D28已知滿足,則的取值范圍為( )ABCD9已知實數(shù)x,y滿足約束條件,若的最大值為2,則實數(shù)k的值為( )A1BC2D10在的展開式中,的系數(shù)為( )A-120B120C-15D1511函數(shù)與的圖象上存在關于直線對稱的點,則的取值范圍是( )ABCD12已知函數(shù),若,則等于( )A-3B-1C3D0二、填空題:本題共4小題,每小題5分,共20分。13李明自主創(chuàng)業(yè),在網(wǎng)上經營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到
5、120元,顧客就少付x元每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付_元;在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為_14過直線上一點作圓的兩條切線,切點分別為,則的最小值是_.15已知,則的最小值是_16已知三棱錐的四個頂點在球的球面上,是邊長為2的正三角形,則球的體積為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)寫出的普通方程和的直角坐標方
6、程;(2)設點在上,點在上,求的最小值以及此時的直角坐標.18(12分)已知函數(shù)()(1)函數(shù)在點處的切線方程為,求函數(shù)的極值;(2)當時,對于任意,當時,不等式恒成立,求出實數(shù)的取值范圍.19(12分)在平面直角坐標系中,已知橢圓的左、右頂點分別為、,焦距為2,直線與橢圓交于兩點(均異于橢圓的左、右頂點).當直線過橢圓的右焦點且垂直于軸時,四邊形的面積為6.(1)求橢圓的標準方程;(2)設直線的斜率分別為.若,求證:直線過定點;若直線過橢圓的右焦點,試判斷是否為定值,并說明理由.20(12分)已知函數(shù).(1)若函數(shù),求的極值;(2)證明:. (參考數(shù)據(jù): )21(12分)已知某種細菌的適宜生
7、長溫度為1227,為了研究該種細菌的繁殖數(shù)量(單位:個)隨溫度(單位:)變化的規(guī)律,收集數(shù)據(jù)如下:溫度/14161820222426繁殖數(shù)量/個2530385066120218對數(shù)據(jù)進行初步處理后,得到了一些統(tǒng)計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關于的散點圖,并根據(jù)散點圖判斷與哪一個更適合作為該種細菌的繁殖數(shù)量關于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(jù)(1)的判斷結果及表格數(shù)據(jù),建立關于的回歸方程(結果精確到0.1);(3)當溫度為27時,該種細菌的繁殖數(shù)量的預報值為多少?參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二
8、成估計分別為,參考數(shù)據(jù):.22(10分)已知,.(1)解不等式;(2)若方程有三個解,求實數(shù)的取值范圍.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數(shù)圖象關于軸對稱,求得的最小值.【詳解】由于,函數(shù)最高點與最低點的高度差為,所以函數(shù)的半個周期,所以,又,則有,可得,所以,將函數(shù)向右平移個單位后函數(shù)圖像關于軸對稱,即平移后為偶函數(shù),所以的最小值為1,故選:B.【點睛】該題主要考查三角函數(shù)的圖象和性質,根據(jù)圖象求出函數(shù)的解析式是解決該題的關鍵,要求熟練
9、掌握函數(shù)圖象之間的變換關系,屬于簡單題目.2C【解析】根據(jù)題意可知當玻璃杯傾斜至杯中水剛好不溢出時,水面邊界所形成橢圓的離心率最大,由橢圓的幾何性質即可確定此時橢圓的離心率,進而確定離心率的取值范圍.【詳解】當玻璃杯傾斜至杯中水剛好不溢出時,水面邊界所形成橢圓的離心率最大.此時橢圓長軸長為,短軸長為6,所以橢圓離心率,所以.故選:C【點睛】本題考查了橢圓的定義及其性質的簡單應用,屬于基礎題.3C【解析】由基本音的諧波的定義可得,利用可得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點睛】本題考查三角函數(shù)的周期與頻率,考查理解
10、分析能力.4B【解析】解:當直線過點時,最大,故選B5B【解析】先利用冪函數(shù)的定義求出m的值,得到冪函數(shù)解析式為f(x)x3,在R上單調遞增,再利用冪函數(shù)f(x)的單調性,即可得到a,b,c的大小關系.【詳解】由冪函數(shù)的定義可知,m11,m2,點(2,8)在冪函數(shù)f(x)xn上,2n8,n3,冪函數(shù)解析式為f(x)x3,在R上單調遞增,1ln3,n3,abc,故選:B.【點睛】本題主要考查了冪函數(shù)的性質,以及利用函數(shù)的單調性比較函數(shù)值大小,屬于中檔題.6C【解析】根據(jù)可判斷丙的院校;由和可判斷丙的學位.【詳解】由題意甲不是軍事科學院的,乙不是軍事科學院的;則丙來自軍事科學院;由來自軍事科學院的
11、不是博士,則丙不是博士;由國防科技大學的是研究生,可知丙不是研究生,故丙為學士.綜上可知,丙來自軍事科學院,學位是學士.故選:C.【點睛】本題考查了合情推理的簡單應用,由條件的相互牽制判斷符合要求的情況,屬于基礎題.7B【解析】根據(jù)等差數(shù)列的性質并結合已知可求出,再利用等差數(shù)列性質可得,即可求出結果【詳解】因為,所以,所以,所以,故選:B【點睛】本題主要考查等差數(shù)列的性質及前項和公式,屬于基礎題8C【解析】設,則的幾何意義為點到點的斜率,利用數(shù)形結合即可得到結論.【詳解】解:設,則的幾何意義為點到點的斜率,作出不等式組對應的平面區(qū)域如圖:由圖可知當過點的直線平行于軸時,此時成立;取所有負值都成
12、立;當過點時,取正值中的最小值,此時;故的取值范圍為;故選:C.【點睛】本題考查簡單線性規(guī)劃的非線性目標函數(shù)函數(shù)問題,解題時作出可行域,利用目標函數(shù)的幾何意義求解是解題關鍵對于直線斜率要注意斜率不存在的直線是否存在9B【解析】畫出約束條件的可行域,利用目標函數(shù)的幾何意義,求出最優(yōu)解,轉化求解即可.【詳解】可行域如圖中陰影部分所示,要使得z能取到最大值,則,當時,x在點B處取得最大值,即,得;當時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標函數(shù)最值求解參數(shù)值,數(shù)形結合思想,分類討論是解題的關鍵,屬于中檔題.10C【解析】寫出展開式的通項公式,令,即,則可求系數(shù)【詳解】
13、的展開式的通項公式為,令,即時,系數(shù)為故選C【點睛】本題考查二項式展開的通項公式,屬基礎題11C【解析】由題可知,曲線與有公共點,即方程有解,可得有解,令,則,對分類討論,得出時,取得極大值,也即為最大值,進而得出結論.【詳解】解:由題可知,曲線與有公共點,即方程有解,即有解,令,則,則當時,;當時,故時,取得極大值,也即為最大值,當趨近于時,趨近于,所以滿足條件故選:C.【點睛】本題主要考查利用導數(shù)研究函數(shù)性質的基本方法,考查化歸與轉化等數(shù)學思想,考查抽象概括、運算求解等數(shù)學能力,屬于難題12D【解析】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關系.詳解:由題設有,故有,所
14、以,從而,故選D.點睛:本題考查函數(shù)的表示方法,解題時注意根據(jù)問題的條件和求解的結論之間的關系去尋找函數(shù)的解析式要滿足的關系. 二、填空題:本題共4小題,每小題5分,共20分。13130. 15. 【解析】由題意可得顧客需要支付的費用,然后分類討論,將原問題轉化為不等式恒成立的問題可得的最大值.【詳解】(1),顧客一次購買草莓和西瓜各一盒,需要支付元.(2)設顧客一次購買水果的促銷前總價為元,元時,李明得到的金額為,符合要求.元時,有恒成立,即,即元.所以的最大值為.【點睛】本題主要考查不等式的概念與性質數(shù)學的應用意識數(shù)學式子變形與運算求解能力,以實際生活為背景,創(chuàng)設問題情境,考查學生身邊的數(shù)
15、學,考查學生的數(shù)學建模素養(yǎng).14【解析】由切線的性質,可知,切由直角三角形PAO,PBO,即可設,進而表示,由圖像觀察可知進而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數(shù)求出最小值.【詳解】由題可知,設,由切線的性質可知,則顯然,則或(舍去)因為令,則,由雙勾函數(shù)單調性可知其在區(qū)間上單調遞增,所以故答案為:【點睛】本題考查在以直線與圓的位置關系為背景下求向量數(shù)量積的最值問題,應用函數(shù)形式表示所求式子,進而利用分析函數(shù)單調性或基本不等式求得最值,屬于較難題.15【解析】因為,展開后利用基本不等式,即可得到本題答案.【詳解】由,得,所以,當且僅當,取等號.故答案為:【點睛】本題主要考查
16、利用基本不等式求最值,考查學生的轉化能力和運算求解能力.16【解析】由題意可得三棱錐的三條側棱兩兩垂直,則它的外接球就是棱長為的正方體的外接球,求出正方體的對角線的長,就是球的直徑,然后求出球的體積.【詳解】解:因為,為正三角形,所以,因為,所以三棱錐的三條側棱兩兩垂直,所以它的外接球就是棱長為的正方體的外接球,因為正方體的對角線長為,所以其外接球的半徑為,所以球的體積為故答案為:【點睛】此題考查球的體積,幾何體的外接球,考查空間想象能力,計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1):,:;(2),此時.【解析】試題分析:(1)的普通方程為,的
17、直角坐標方程為;(2)由題意,可設點的直角坐標為到的距離當且僅當時,取得最小值,最小值為,此時的直角坐標為.試題解析: (1)的普通方程為,的直角坐標方程為.(2)由題意,可設點的直角坐標為,因為是直線,所以的最小值即為到的距離的最小值,.當且僅當時,取得最小值,最小值為,此時的直角坐標為.考點:坐標系與參數(shù)方程.【方法點睛】參數(shù)方程與普通方程的互化:把參數(shù)方程化為普通方程,需要根據(jù)其結構特征,選取適當?shù)南麉⒎椒ǎR姷南麉⒎椒ㄓ校捍胂麉⒎?;加減消參法;平方和(差)消參法;乘法消參法;混合消參法等把曲線的普通方程化為參數(shù)方程的關鍵:一是適當選取參數(shù);二是確?;セ昂蠓匠痰牡葍r性注意方程中的參
18、數(shù)的變化范圍18(1)極小值為,極大值為.(2)【解析】(1)根據(jù)斜線的斜率即可求得參數(shù),再對函數(shù)求導,即可求得函數(shù)的極值;(2)根據(jù)題意,對目標式進行變形,構造函數(shù),根據(jù)是單調減函數(shù),分離參數(shù),求函數(shù)的最值即可求得結果.【詳解】(1)函數(shù)的定義域為,可知,解得,可知在,時,函數(shù)單調遞增,在時,函數(shù)單調遞減,可知函數(shù)的極小值為,極大值為.(2)可以變形為,可得,可知函數(shù)在上單調遞減,可得,設,可知函數(shù)在單調遞減,可知,可知參數(shù)的取值范圍為.【點睛】本題考查由切線的斜率求參數(shù)的值,以及對具體函數(shù)極值的求解,涉及構造函數(shù)法,以及利用導數(shù)求函數(shù)的值域;第二問的難點在于對目標式的變形,屬綜合性中檔題.
19、19(1);(2)證明見解析;【解析】(1)由題意焦距為2,設點,代入橢圓,解得,從而四邊形的面積,由此能求出橢圓的標準方程(2)由題意,聯(lián)立直線與橢圓的方程,得,推導出,由此猜想:直線過定點,從而能證明,三點共線,直線過定點由題意設,直線,代入橢圓標準方程:,得,推導出,由此推導出(定值)【詳解】(1)由題意焦距為2,可設點,代入橢圓,得,解得,四邊形的面積,橢圓的標準方程為(2)由題意,聯(lián)立直線與橢圓的方程,得,解得,從而,同理可得,猜想:直線過定點,下證之:,三點共線,直線過定點為定值,理由如下:由題意設,直線,代入橢圓標準方程:,得,(定值)【點睛】本題考查橢圓標準方程的求法,考查直線
20、過定點的證明,考查兩直線的斜率的比值是否為定值的判斷與求法,考查橢圓、直線方程、韋達定理等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于中檔題20(1)見解析;(1)見證明【解析】(1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間,從而求出函數(shù)的極值即可;(1)問題轉化為證exx1xlnx10,根據(jù)xlnxx(x1),問題轉化為只需證明當x0時,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),根據(jù)函數(shù)的單調性證明即可【詳解】(1),當,當,在上遞增,在上遞減,在取得極大值,極大值為,無極大值.(1)要證f(x)+1exx1即證exx1xlnx10,先證明lnx
21、x1,取h(x)lnxx+1,則h(x),易知h(x)在(0,1)遞增,在(1,+)遞減,故h(x)h(1)0,即lnxx1,當且僅當x1時取“”,故xlnxx(x1),exx1xlnxex1x1+x1,故只需證明當x0時,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),則k(x)ex4x+1,令F(x)k(x),則F(x)ex4,令F(x)0,解得:x1ln1,F(xiàn)(x)遞增,故x(0,1ln1時,F(xiàn)(x)0,F(xiàn)(x)遞減,即k(x)遞減,x(1ln1,+)時,F(xiàn)(x)0,F(xiàn)(x)遞增,即k(x)遞增,且k(1ln1)58ln10,k(0)10,k(1)e18+10,由零點存在定理,可知x1(0,1ln1),x1(1ln1,1),使得k(x1)k(x1)0,故0 xx1或xx1時,k(x)0,k(x)遞增,當x1xx1時,k(x)0,k(x)遞減,故k(x)的最小值是k
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 服裝廠縫紉工聘用合同
- 外資企業(yè)律師聘用合同樣本
- 農田水利箱涵施工合同
- 羊毛制品生產線采購招標合同三篇
- 軟件著作權實施許可合同(2篇)
- 土方分包合同的付款方式
- 集體土地變更國有土地出讓合同范本
- 集體合同簽訂 簡報
- 市政綠化項目合同范例
- 草籽播種合同范例
- 非新生兒破傷風診療
- 建筑施工企業(yè)八大員繼續(xù)教育模擬考試題庫500題(含標準答案)
- 實驗室組織機構圖
- 眾創(chuàng)空間運營管理實施方案
- 2024智慧城市數(shù)據(jù)采集標準規(guī)范
- 2024年中國電子財務公司春季校園招聘3人高頻難、易錯點500題模擬試題附帶答案詳解
- 寒假作業(yè)一年級上冊《數(shù)學每日一練》30次打卡
- 云南省2022年中考道德與法治真題試卷
- 業(yè)委會解除小區(qū)物業(yè)服務合同的函
- 食堂食材配送項目投標方案(技術方案)
- 2024-2025學年北京市海淀區(qū)數(shù)學三上期末教學質量檢測試題含解析
評論
0/150
提交評論