版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高二下數(shù)學(xué)模擬試卷注意事項(xiàng):1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角條形碼粘貼處。2作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題
2、卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1若函數(shù)的圖象的頂點(diǎn)在第一象限,則函數(shù)的圖像是( )ABCD2函數(shù)有( )A最大值為1B最小值為1C最大值為D最小值為3二項(xiàng)式的展開式中的系數(shù)是( )ABCD4若復(fù)數(shù) 滿足 ,則在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是( )ABCD5已知函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,那么( )A是函數(shù)的極小值點(diǎn)B是函數(shù)的極大值點(diǎn)C是函數(shù)的極大值點(diǎn)D函數(shù)有兩個(gè)極值點(diǎn)6若函數(shù)f(x)=xex,x0 x2+3x,xcbBcabCcbaDabc9若3x+xn展開式二項(xiàng)式系數(shù)之和為32,則展開式中含xA40B30C2
3、0D1510運(yùn)行下列程序,若輸入的的值分別為,則輸出的的值為ABCD11已知向量,若,則( )A1B1C2或1D2或112橢圓短軸的一個(gè)端點(diǎn)和兩個(gè)焦點(diǎn)相連構(gòu)成一個(gè)三角形,若該三角形內(nèi)切圓的半徑為,則該橢圓的離心率為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13若,且,則的最小值為_14已知函數(shù)存在極小值,且對(duì)于的所有可能取值,的極小值恒大于0,則的最小值為_15已知表示兩個(gè)不同的平面,為平面內(nèi)的一條直線,則“構(gòu)成直二面角”是“”的_條件(填“充分不必要”、“必要不充分”、“充要”“或”“既不充分也不必要”).16的展開式中含項(xiàng)的系數(shù)是_三、解答題:共70分。解答應(yīng)寫出文字說
4、明、證明過程或演算步驟。17(12分)已知函數(shù).(I)解不等式:;(II)若函數(shù)的最大值為,正實(shí)數(shù)滿足,證明:18(12分)在中,且.(1)求邊長(zhǎng);(2)求邊上中線的長(zhǎng).19(12分)如圖,在平面直角坐標(biāo)系中,已知橢圓的離心率為,且過點(diǎn).設(shè)為橢圓的右焦點(diǎn), 為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),連結(jié)并延長(zhǎng),分別交橢圓于兩點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線的斜率分別為,是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.20(12分)設(shè)函數(shù).(1)當(dāng)時(shí),解不等式;(2)若存在實(shí)數(shù),使得不等式成立,求實(shí)數(shù)的取值范圍.21(12分)已知過點(diǎn)的直線l的參數(shù)方程是為參數(shù)以平面直角坐標(biāo)系的原點(diǎn)為極
5、點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程式為(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;(2)若直線l與曲線C交于兩點(diǎn)A,B,且,求實(shí)數(shù)m的值22(10分)在平面真角坐標(biāo)系xOy中,曲線的參數(shù)方程為(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;(2)若曲線與曲線交于M,N兩點(diǎn),直線OM和ON的斜率分別為和,求的值參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】求導(dǎo),根據(jù)導(dǎo)函數(shù)的性質(zhì)解題?!驹斀狻浚甭蕿檎?,排除BD選項(xiàng)。的
6、圖象的頂點(diǎn)在第一象限其對(duì)稱軸大于0即b0,選A【點(diǎn)睛】本題考查根據(jù)已知信息選導(dǎo)函數(shù)的大致圖像。屬于簡(jiǎn)單題。2、A【解析】對(duì)函數(shù)進(jìn)行求導(dǎo),判斷出函數(shù)的單調(diào)性,進(jìn)而判斷出函數(shù)的最值情況.【詳解】解:,當(dāng)時(shí),當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減,有最大值為,故選A.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)最值問題,對(duì)函數(shù)的導(dǎo)函數(shù)的正負(fù)性的判斷是解題的關(guān)鍵.3、B【解析】利用二項(xiàng)展開式的通項(xiàng)公式,令的冪指數(shù)等于,即可求出的系數(shù).【詳解】由題意,二項(xiàng)式展開式的通項(xiàng)公式為,令,解得,所以的系數(shù)為.故選:B【點(diǎn)睛】本題主要考查二項(xiàng)展開式的通項(xiàng)公式,考查學(xué)生計(jì)算能力,屬于基礎(chǔ)題.4、D【解析】利用復(fù)數(shù)的運(yùn)算法則、幾何意
7、義即可得出【詳解】由題意i z1+2i,iz(i)(1+2i)(i),z2i則在復(fù)平面內(nèi),z所對(duì)應(yīng)的點(diǎn)的坐標(biāo)是(2,1)故選D【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題5、C【解析】通過導(dǎo)函數(shù)的圖象可知;當(dāng)在時(shí),;當(dāng)在時(shí),這樣就可以判斷有關(guān)極值點(diǎn)的情況.【詳解】由導(dǎo)函數(shù)的圖象可知:當(dāng)在時(shí),函數(shù)單調(diào)遞增;當(dāng)在時(shí),函數(shù)單調(diào)遞減,根據(jù)極值點(diǎn)的定義,可以判斷是函數(shù)的極大值點(diǎn),故本題選C.【點(diǎn)睛】本題考查了通過函數(shù)導(dǎo)函數(shù)的圖象分析原函數(shù)的極值點(diǎn)的情況.本題容易受導(dǎo)函數(shù)的單調(diào)性的干擾.本題考查了識(shí)圖能力.6、A【解析】先作y=f(x)的圖象與直線y=-x+2的圖象在同
8、一直角坐標(biāo)系中的位置圖象,再結(jié)合函數(shù)與方程的綜合應(yīng)用即可得解【詳解】設(shè)h(x)=xe則h(x)=1-x則h(x)在(0,1)為增函數(shù),在(1,+)為減函數(shù),則y=f(x)的圖象與直線y=-x+2的圖象在同一直角坐標(biāo)系中的位置如圖所示,由圖可知,當(dāng)g(x)有三個(gè)零點(diǎn),則a的取值范圍為:0a0,c=又lna=lne1所以lnclna,即有ca,因此cab【點(diǎn)睛】本題主要考查利用函數(shù)的單調(diào)性比較大小。9、D【解析】先根據(jù)二項(xiàng)式系數(shù)的性質(zhì)求得n5,可得二項(xiàng)式展開式的通項(xiàng)公式,再令x的冪指數(shù)等于3,求得r的值,即可求得結(jié)果【詳解】由3x+xn展開式的二項(xiàng)式系數(shù)之和為2n32,求得可得3x+x5展開式的通
9、項(xiàng)公式為 Tr+1=C5r3x5-rxr令5-r23,求得 r4,則展開式中含x3故選:D【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題10、B【解析】分析:按照程序框圖的流程逐一寫出即可詳解:第一步:第二步:第三步:第四步:最后:輸出,故選B點(diǎn)睛:程序框圖的題學(xué)生只需按照程序框圖的意思列舉前面有限步出來,觀察規(guī)律,得出所求量與步數(shù)之間的關(guān)系式11、C【解析】根據(jù)題意得到的坐標(biāo),由可得的值.【詳解】由題,或,故選C【點(diǎn)睛】本題考查利用坐標(biāo)法求向量差及根據(jù)向量垂直的數(shù)量積關(guān)系求參數(shù)12、C【解析】利用等面積法得出、的等式,可得出、
10、的等量關(guān)系式,可求出橢圓的離心率.【詳解】由橢圓短軸的一個(gè)端點(diǎn)和兩個(gè)焦點(diǎn)所構(gòu)成的三角形面積為,該三角形的周長(zhǎng)為,由題意可得,可得,得,因此,該橢圓的離心率為,故選:C.【點(diǎn)睛】本題考查橢圓離心率的計(jì)算,解題時(shí)要結(jié)合已知條件列出有關(guān)、的齊次等式,通過化簡(jiǎn)計(jì)算出離心率的值,考查運(yùn)算求解能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析:由對(duì)數(shù)運(yùn)算和換底公式,求得 的關(guān)系為,根據(jù)基本不等式確定詳解:因?yàn)?,所?,所以 ,即所以 當(dāng)且僅當(dāng),即,此時(shí)時(shí)取等號(hào)所以最小值為點(diǎn)睛:本題考查了對(duì)數(shù)的運(yùn)算和對(duì)數(shù)換底公式的綜合應(yīng)用,根據(jù)“1”的代換聯(lián)系基本不等式求最值,綜合性強(qiáng),屬
11、于中檔題14、【解析】因,故有解,即有解令取得極小值點(diǎn)為,則,則函數(shù)的極小值為,將代入可得,由題設(shè)可知,令,則,由,即當(dāng)時(shí),函數(shù)取最小值,即,也即,所以,即,應(yīng)填答案點(diǎn)睛:本題是一道較為困難的試題求解思路是先確定極小值的極值點(diǎn)為,則,進(jìn)而求出函數(shù)的極小值,通過代入消元將未知數(shù)消掉,然后求函數(shù)的最小值為,從而將問題轉(zhuǎn)化為,然后通過解不等式求出即15、必要不充分【解析】根據(jù)直二面角的定義、面面垂直的判定理、充分性、必要性的定義可以直接判斷.【詳解】構(gòu)成直二面角,說明平面互相垂直,但是不一定成立,比如這兩個(gè)相交平面的交線顯然是平面內(nèi)的一條直線,它就不垂直于平面;當(dāng)時(shí), 為平面內(nèi)的一條直線,由面面垂直
12、的判定定理可知:互相垂直,因此構(gòu)成直二面角,故由可以推出構(gòu)成直二面角,故“構(gòu)成直二面角”是“”的必要不充分條件.故答案為:必要不充分【點(diǎn)睛】本題考查了必要不充分條件的判斷,考查了面面垂直的判定定理.16、5【解析】分析:先求展開式的通項(xiàng)公式,即可求含項(xiàng)的系數(shù).詳解:展開式的通項(xiàng)公式,可得 展開式中含項(xiàng),即,解得, 展開式中含項(xiàng)的系數(shù)為.故答案為5.點(diǎn)睛:本題考查了二項(xiàng)式定理的應(yīng)用,利用二項(xiàng)展開式的通項(xiàng)公式求展開式中某項(xiàng)的系數(shù)是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(I)(2,6);(II)詳見解析.【解析】(I)按零點(diǎn)分類討論,去掉絕對(duì)值,分別求解不等式
13、,即可得絕對(duì)值不等式的解集;(II)由函數(shù),求得其最大值,得到,再利用基本不等式,即可求解.【詳解】(I)當(dāng)時(shí),解得,;當(dāng)時(shí),解得,;當(dāng)時(shí),解得,無解.綜上所述,原不等式的解集為(2,6).(II)證明:=,即 (當(dāng)且僅當(dāng)時(shí),等號(hào)成立).【點(diǎn)睛】本題主要考查了絕對(duì)值不等式的求解,以及不等式的證明問題,其中解答中合理分類討論去掉絕對(duì)值號(hào)是解答含絕對(duì)值不等式的關(guān)鍵,同時(shí)注意基本不等式在不等式證明中的應(yīng)用,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.18、(1);(2).【解析】(1)利用同角的三角函數(shù)關(guān)系,可以求出的值,利用三角形內(nèi)角和定理,二角和的正弦公式可以求出,最后利用正弦定理求出長(zhǎng);(2)利用余
14、弦定理可以求出的長(zhǎng),進(jìn)而可以求出的長(zhǎng),然后在中,再利用余弦定理求出邊上中線的長(zhǎng).【詳解】(1),由正弦定理可知中:(2)由余弦定理可知:,是的中點(diǎn),故,在中,由余弦定理可知:【點(diǎn)睛】本題考查了正弦定理、余弦定理、同角的三角函數(shù)關(guān)系、以及三角形內(nèi)角和定理,考查了數(shù)學(xué)運(yùn)算能力.19、(1);(2)存在,使得.【解析】分析:(1)在橢圓上,所以滿足橢圓方程,又離心率為,聯(lián)立兩個(gè)等式即可解出橢圓方程;(2),則,所以的方程為,聯(lián)立AF的方程和橢圓方程即可求得C點(diǎn)坐標(biāo),同理求得D點(diǎn)坐標(biāo),從而分析的比值.詳解:(1)設(shè)橢圓的方程為,由題意知解得所以橢圓的方程為.(2)設(shè),則,又,所以直線的方程為.由消去,
15、得 .因?yàn)槭窃摲匠痰囊粋€(gè)解,所以點(diǎn)的橫坐標(biāo).又點(diǎn)在直線上,所以 ,從而點(diǎn)的坐標(biāo)為(同理,點(diǎn)的坐標(biāo)為(,所以 ,即存在,使得.點(diǎn)睛:橢圓和拋物線的結(jié)合也是高考一直以來的一個(gè)熱點(diǎn),設(shè)而不求思想是圓錐曲線題目的考查核心,韋達(dá)定理就是該思想的體現(xiàn),所以在圓錐曲線中要把所求的問題轉(zhuǎn)化出來韋達(dá)定理,整體帶入是解題的關(guān)鍵.20、(1) (2)【解析】(1)分段去絕對(duì)值求解不等式即可.(2) 由題意,存在實(shí)數(shù),使得不等式成立,再根據(jù)三角不等式求解即可.【詳解】解:(1), 于是當(dāng)時(shí),原不等式等價(jià)于,解得;當(dāng)時(shí),原不等式等價(jià)于,解得;當(dāng)時(shí),原不等式等價(jià)于,無解;綜上,原不等式的解集為.(2)由題意,存在實(shí)數(shù),使
16、得不等式成立,則只需,又,當(dāng)時(shí)取等號(hào).所以,解得.【點(diǎn)睛】本題主要考查了絕對(duì)值不等式的求解以及絕對(duì)值三角不等式的運(yùn)用,屬于中檔題.21、(1),;(2)或【解析】分析:(1)直接利用轉(zhuǎn)換關(guān)系把參數(shù)方程和極坐標(biāo)方程與直角坐標(biāo)方程進(jìn)行轉(zhuǎn)化(2)利用方程組求出一元二次方程,利用根和系數(shù)的關(guān)系式求出結(jié)果詳解:(1)過點(diǎn)的直線l的參數(shù)方程是為參數(shù)轉(zhuǎn)化為直角坐標(biāo)方程為:,曲線C的極坐標(biāo)方程式為轉(zhuǎn)化為直角坐標(biāo)方程為:(2)直線l與曲線C交于兩點(diǎn)A,B,則:把為參數(shù),代入曲線方程,整理得:由于,故:解得:或點(diǎn)睛:本題考查的知識(shí)要點(diǎn):參數(shù)方程和極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化,一元二次方程根與系數(shù)的關(guān)系的應(yīng)用屬基礎(chǔ)題.22、(1),(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024著作權(quán)許可合同范本
- 2024計(jì)算機(jī)軟件開發(fā)合同書
- 2024貼牌加工合同范本
- 2024新版?zhèn)€人借款合同樣式
- 《古代埃及的建筑》課件
- 2024工亡補(bǔ)償合同協(xié)議書范本
- 企業(yè)網(wǎng)絡(luò)規(guī)劃組網(wǎng)方案
- 蘇州科技大學(xué)天平學(xué)院《人力資源管理軟件》2022-2023學(xué)年第一學(xué)期期末試卷
- 搪瓷制品的社會(huì)責(zé)任與企業(yè)文化考核試卷
- 《物業(yè)企業(yè)平臺(tái)》課件
- 代理申辦原產(chǎn)地證委托書
- 辦公室工作的職能定位
- 全套企業(yè)管理流程(文字版)
- 檢驗(yàn)科規(guī)章制度
- ICC國(guó)際商會(huì)NCNDA和IMFPA中英文對(duì)照可編輯
- 關(guān)于房屋建筑和市政工程界定文件
- 各種表面活性劑耐堿性一覽表
- 我最喜歡的運(yùn)動(dòng)英語作文(精選3篇)
- 北師大版小學(xué)四年級(jí)數(shù)學(xué)上冊(cè)全冊(cè)說課稿
- 【中考英語】中考看圖寫話質(zhì)量分析
- 關(guān)于生態(tài)美育的思考-生態(tài)美育3篇
評(píng)論
0/150
提交評(píng)論