下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、四川省宜賓市平灘中學(xué)高一數(shù)學(xué)理模擬試題含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1. 若函數(shù),則對任意實數(shù),下列不等式總成立的是A BC D參考答案:A2. .已知數(shù)列an為等比數(shù)列,且,則( )A. 5B. 4C. 4D. 4參考答案:C【分析】利用等比中項的性質(zhì)求解.【詳解】由題得.因為等比數(shù)列的奇數(shù)項同號,所以.故選:C【點睛】本題主要考查等比數(shù)列的性質(zhì)和等比中項的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.3. 已知ABC和點M滿足若存在實數(shù)n使得成立,則n=( ) A2 B3 C4 D.5參考答案:B4
2、. 向量,若,則x的值為( )A. B.2 C. D.- 參考答案:A向量,故選:A5. (5分)函數(shù)的零點所在的區(qū)間是()ABCD參考答案:B考點:函數(shù)零點的判定定理 分析:根據(jù)零點存在定理,對照選項,只須驗證f(0),f(),f(),等的符號情況即可也可借助于圖象分析:畫出函數(shù)y=ex,y=的圖象,由圖得一個交點解答:畫出函數(shù)y=ex,y=的圖象:由圖得一個交點,由于圖的局限性,下面從數(shù)量關(guān)系中找出答案,選B點評:超越方程的零點所在區(qū)間的判斷,往往應(yīng)用零點存在定理:一般地,若函數(shù)y=f(x)在區(qū)間a,b上的圖象是一條不間斷的曲線,且f(a)f(b)0,則函數(shù)y=f(x)在區(qū)間a,b上有零點
3、6. 已知平行四邊形ABCD的三個頂點的坐標(biāo)分別是,則向量的坐標(biāo)是( ) A. B. C. D. 參考答案:B略7. 滿足條件的集合的個數(shù)是( )A.4 B.3 C.2 D.1參考答案:C8. 已知集合則中所含元素個數(shù)為( )A.3 B.6 C.8 D.10參考答案:D略9. 判斷下列各組中的兩個函數(shù)是同一函數(shù)的為()(1)y1=,y2=x5;(2)y1=,y2=;(3)y1=x,y2=;(4)y1=x,y2=;(5),y2=2x5A(1),(2)B(2),(3)C(4)D(3),(5)參考答案:C【考點】判斷兩個函數(shù)是否為同一函數(shù) 【專題】函數(shù)的性質(zhì)及應(yīng)用【分析】確定函數(shù)的三要素是:定義域、
4、對應(yīng)法則和值域據(jù)此可判斷出答案【解答】解:(1)函數(shù)的定義域是x|x3,而y2=x5的定義域是R,故不是同一函數(shù);同理(2)、(3)、(5)中的兩個函數(shù)的定義域皆不相同,故都不是同一函數(shù)(4)=x,而y1=x,故是同一函數(shù)故選C【點評】本題考查了函數(shù)的定義,若一個函數(shù)的定義域和對應(yīng)法則給定,則值域隨之而確定10. 已知,則函數(shù)的解析式為( )A B C D參考答案:D二、 填空題:本大題共7小題,每小題4分,共28分11. 已知一個扇形的周長是40,則扇形面積的最大值為_參考答案:略12. 某公司有1000名員工,其中, 高層管理人員占5,中層管理人員占15,一般員工占80,為了了解該公司的某
5、種情況,現(xiàn)用分層抽樣的方法抽取120人進(jìn)行調(diào)查,則一般員工應(yīng)抽取 人ks5u參考答案:96略13. 若長方體的一個頂點上的三條棱的長分別為3,4,5,從長方體的一條體對角線的一個端點出發(fā),沿表面運動到另一個端點,其最短路程是_參考答案:14. 實數(shù)a,b,5a,7,3b,c組成等差數(shù)列,且ab5a73bc2500,則c的值為 .參考答案:9915. “歡歡”按如圖所示的規(guī)則練習(xí)數(shù)數(shù),記在數(shù)數(shù)過程中對應(yīng)中指的數(shù)依次排列所構(gòu)成的數(shù)列為,則數(shù)到2 008時對應(yīng)的指頭是,數(shù)列an的通項公式.(填出指頭的名稱,各指頭的名稱依次為大拇指、食指、中指、無名指、小指).參考答案:食指4n1略16. 若集合A=
6、1,1,B=0,2,則集合z|z=x+y,xA,yB中的元素的個數(shù)為參考答案:3【考點】集合中元素個數(shù)的最值【專題】規(guī)律型【分析】根據(jù)集合的元素關(guān)系確定集合即可【解答】解:A=1,1,B=0,2,xA,yB,x=1或x=1,y=0或y=2,則z=x+y=1,1,3,即B=1,1,3故答案為:3【點評】本題主要考查集合元素個數(shù)的確定,利用條件確定集合的元素即可,比較基礎(chǔ)17. 集合,則集合M、N的關(guān)系是 參考答案:三、 解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18. 設(shè)為奇函數(shù),為常數(shù),(1)求的值;(2)證明在區(qū)間上單調(diào)遞增;(3)若,不等式恒成立,求實數(shù)的取值
7、范圍。參考答案:(3)設(shè),則在上是增函數(shù) 對恒成立,-略19. (10分)已知集合,且,求實數(shù)m的取值范圍.參考答案:解:,. 1分 若,則,滿足; 4 分若,則. 9分 綜上,的取值范圍是或,即. 10分 20. (本題滿分16分) 已知數(shù)列an是等差數(shù)列,數(shù)列bn是等比數(shù)列,且對任意的nN*,都有a1b1a2b2a3b3anbnn2n+3(1)若bn的首項為4,公比為2,求數(shù)列anbn的前n項和Sn;(2)若a18 求數(shù)列an與bn的通項公式; 試探究:數(shù)列bn中是否存在某一項,它可以表示為該數(shù)列中其它r(rN, r2)項的和?若存在,請求出該項;若不存在,請說明理由參考答案:(1)a1b
8、1a2b2a3b3anbnn2n+3a1b1a2b2a3b3an1bn1(n1)2n+2 (n2)兩式相減得:anbnn2n+3(n1)2n+2(n1)2n+2 (n2)而當(dāng)n1時,a1b124適合上式,anbn(n1)2n+2 (nN*)bn是首項為4、公比為2的等比數(shù)列 bn2n+1即k(2q)n2b(2q)n2(bk)0對任意的n2恒成立, 又a18,kb8kb4,an4n4,bn2n假設(shè)數(shù)列bn中第k項可以表示為該數(shù)列中其它r項的和,即,從而,易知ktr1 ktr1,此與ktr1矛盾,從而這樣的項不存在21. (本題滿分14分)已知函數(shù)f(x)sin(x),其中0,|.(1)若coscossinsin0,求的值;(2)在(1)的條件下,若函數(shù)f(x)的圖象的相鄰兩條對稱軸之間的距離等于,求函數(shù)f(x)的解析式;并求最小正實數(shù)m,使得函數(shù)f(x)的圖象向左平移m個單位后所對應(yīng)的函數(shù)是偶函數(shù) 參考答案:解: (1)由coscossinsin0得coscossinsin0,即cos0. .(3分)又|,;.(6分)(2)由(1)得,f(x)sin.依題意,.又T,故3,f
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年品管部主管職責(zé)與權(quán)限模版(二篇)
- 2024年小學(xué)語文教師個人研修計劃范例(三篇)
- 2024年小學(xué)體育器材管理制度范文(三篇)
- 2024年外商投資企業(yè)勞動合同經(jīng)典版(三篇)
- 2024年安全總監(jiān)崗位職責(zé)具體內(nèi)容模版(三篇)
- 2024年學(xué)校校本培訓(xùn)計劃模版(二篇)
- 2024年各種管理制度(二篇)
- 2024年幼兒園大班的下學(xué)期工作計劃范例(四篇)
- 2024年城鎮(zhèn)集體所有制企業(yè)職工勞動合同格式范本(二篇)
- 【《幼兒園自然課程游戲活動指導(dǎo)的適應(yīng)性策略探究》6400字(論文)】
- TnPM設(shè)備管理體系課件(99張)
- 《望天門山》-優(yōu)質(zhì)課件
- 高中數(shù)學(xué)必修一黃岡中學(xué)試卷(內(nèi)含答案)
- 外墻粘貼巖棉板保溫隱蔽
- 加油站安全承諾書
- 小學(xué)數(shù)學(xué)節(jié)低年級一二年級七巧板競賽試題(最新)
- 商品和服務(wù)稅收分類編碼表
- 豬的呼吸道疾病課件
- 民俗類型與民俗旅游課件
- 高中物理選修《變壓器》PPT
- 智慧燃?xì)獍踩O(jiān)管平臺解決方案
評論
0/150
提交評論