下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、四川省綿陽市第十二中學(xué)高三數(shù)學(xué)理上學(xué)期期末試卷含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1. 設(shè)f(x)=,則f(f(2)的值為()A0B1C2D3參考答案:C【考點(diǎn)】分段函數(shù)的解析式求法及其圖象的作法【分析】考查對(duì)分段函數(shù)的理解程度,f(2)=log3(221)=1,所以f(f(2)=f(1)=2e11=2【解答】解:f(f(2)=f(log3(221)=f(1)=2e11=2,故選C2. 設(shè)集合,則等于( )A B C D參考答案:A3. 某游戲中,一個(gè)珠子從如右圖所示的通道(圖中的斜線)由上至下滑下,從最大面的六個(gè)出口出
2、來,規(guī)定猜中出口者為勝如果你在該游戲中,猜得珠子從出口3出來,那么你取勝的概率為( ) A B C D以上都不對(duì)參考答案:A珠子從出口1出來有種方法,從出口2出來有種方法,依次從出口i(li6)出現(xiàn)有方法,故取任的概率為,故選A4. 復(fù)數(shù)(i是虛數(shù)單位)的模等于()AB10CD5參考答案:A考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算 專題:數(shù)系的擴(kuò)充和復(fù)數(shù)分析:首先將復(fù)數(shù)化簡為a+bi的形式,然后求模解答:解:=1+=3+i,故模為;故選:A點(diǎn)評(píng):本題考查了復(fù)數(shù)的混合運(yùn)算以及復(fù)數(shù)模的求法;屬于基礎(chǔ)題5. 不等式對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍為()A(,14,) B(,25,)C1,2 D(,12,)
3、參考答案:A6. 如圖,四邊形OABC是邊長為2的正方形,曲線段DE所在的曲線方程為,現(xiàn)向該正方形內(nèi)拋擲1枚豆子,則該枚豆子落在陰影部分的概率為( )A. B. C. D. 參考答案:A根據(jù)條件可知,陰影部分的面積為, 所以,豆子落在陰影部分的概率為.故選A.7. 在等比數(shù)列中,則等于( ) A. B. C. D.參考答案:C8. 已知A,B為雙曲線E的左,右頂點(diǎn),點(diǎn)M在E上,ABM為等腰三角形,頂角為120,則E的離心率為()AB2CD參考答案:D【考點(diǎn)】雙曲線的簡單性質(zhì)【專題】圓錐曲線的定義、性質(zhì)與方程【分析】設(shè)M在雙曲線=1的左支上,由題意可得M的坐標(biāo)為(2a, a),代入雙曲線方程可得
4、a=b,再由離心率公式即可得到所求值【解答】解:設(shè)M在雙曲線=1的左支上,且MA=AB=2a,MAB=120,則M的坐標(biāo)為(2a, a),代入雙曲線方程可得,=1,可得a=b,c=a,即有e=故選:D【點(diǎn)評(píng)】本題考查雙曲線的方程和性質(zhì),主要考查雙曲線的離心率的求法,運(yùn)用任意角的三角函數(shù)的定義求得M的坐標(biāo)是解題的關(guān)鍵9. 三棱錐及其三視圖中的正(主)視圖和側(cè)(左)視圖如圖所示,則棱SB的長為A. B. C. D. 參考答案:由三棱錐的正視圖和側(cè)視圖知,底面是等腰三角形,底邊,高為,所以腰長,在中,選.10. 已知函數(shù),其圖象與直線y=2相鄰兩個(gè)交點(diǎn)的距離為若f(x)1對(duì)于任意的恒成立,則的取值范
5、圍是()ABCD參考答案:B【考點(diǎn)】正弦函數(shù)的圖象【分析】根據(jù)條件先求出函數(shù)的周期,計(jì)算出的值,根據(jù)不等式恒成立,結(jié)合三角函數(shù)的解法求出不等式的解即可得到結(jié)論【解答】解:函數(shù),其圖象與直線y=2相鄰兩個(gè)交點(diǎn)的距離為函數(shù)的周期T=,即=,即=2,則f(x)=2sin(2x+),若f(x)1則2sin(2x+)1,則sin(2x+),若f(x)1對(duì)于任意的恒成立,故有+2k+,且+2k+,求得2k+,且2k+,kZ,故的取值范圍是2k+,2k+,kZ,|,當(dāng)k=0時(shí),的取值范圍是,故選:B二、 填空題:本大題共7小題,每小題4分,共28分11. 已知向量|=l,|=,且?(2+)=1,則向量,的夾
6、角的余弦值為參考答案:【考點(diǎn)】9R:平面向量數(shù)量積的運(yùn)算【分析】利用向量的數(shù)量積運(yùn)算法則和夾角公式即可得出【解答】解:?(2+)=1,化為=故答案為:12. 已知一個(gè)圓錐的側(cè)面展開圖是一個(gè)半徑為,圓心角為的扇形,則此圓錐的體積為 參考答案:13. 已知點(diǎn)P(x,y)是直線kx+y+4=0(k0)上一動(dòng)點(diǎn),PA、PB是圓C:的兩條切線,A、B是切點(diǎn),若四邊形PACB的最小面積是2,則k的值為 。參考答案:214. 某工廠對(duì)一批元件進(jìn)行了抽樣檢測,根據(jù)抽樣檢測后的元件長度 (單位:mm) 數(shù)據(jù)繪制了頻率分布直方圖 (如圖)若規(guī)定長度在 101以上的元件是合格品,若則根據(jù)頻率分布直方圖估計(jì)這批產(chǎn)品的
7、合格品率是 參考答案:65%15. 已知向量/,則=_參考答案:略16. 若方程的取值范圍是 參考答案:答案: 17. 在中,角所對(duì)的邊分別為且,若,則的取值范圍是 _.參考答案:略三、 解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18. 已知(其中為實(shí)數(shù)且),若是的充分不必要條件,求實(shí)數(shù)的取值范圍。參考答案:略19. (本小題15分)已知函數(shù),。(1)當(dāng)時(shí),求的最大值;(2)設(shè),是圖像上不同的兩點(diǎn)的連線的斜率,是否存在實(shí)數(shù),使得恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說明理由。參考答案:解: 的定義域?yàn)椋?分(1)當(dāng)時(shí),在, , 4分所以在區(qū)間上單調(diào)遞減, 6分
8、故。 7分(2)存在符合條件。解法一:據(jù)題意在=圖像上總可以找到一點(diǎn)使以為切點(diǎn)的切線平行圖像上的任意兩點(diǎn)的連線, 9分即存在恒成立,12分因?yàn)?,所以,所? 14分故存在符合條件。 15分解法二:=,不妨設(shè)任意不同兩點(diǎn),其中,則=10分由于恒成立,則恒成立,知恒成立12分因?yàn)?,所以,故?14分故存在符合條件。 15分20. (本題滿分12分)已知函數(shù)=,=,若曲線和曲線都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線()求,的值;()若時(shí),求的取值范圍參考答案:()由已知得, 而=,=,=4,=2,=2,=2; ()由()知, 設(shè)函數(shù)=(), =, 有題設(shè)可得0,即, 令=0得,=,=-2, (1
9、)若,則-20,當(dāng)時(shí),0,即在單調(diào)遞減,在單調(diào)遞增,故在=取最小值,而=0, 當(dāng)-2時(shí),0,即恒成立, (2)若,則=, 當(dāng)-2時(shí),0,在(-2,+)單調(diào)遞增,而=0, 當(dāng)-2時(shí),0,即恒成立, (3)若,則=0, 當(dāng)-2時(shí),不可能恒成立, 綜上所述,的取值范圍為1,.21. 如圖,正方形的邊長為4,點(diǎn),分別為,的中點(diǎn),將,分別沿,折起,使,兩點(diǎn)重合于點(diǎn),連接()求證:平面;()求與平面所成角的正弦值參考答案:(),平面,又平面,由已知可得,平面;7分()由()知平面平面,則為與平面所成角,設(shè),交于點(diǎn),連,則, 又平面,平面,12分在中,與平面所成角的正弦值為15分22. 某濕地公園內(nèi)有一條河
10、,現(xiàn)打算建一座橋(如圖1)將河兩岸的路連接起來,剖面設(shè)計(jì)圖紙(圖2)如下,其中,點(diǎn)A,E為x軸上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),曲線段BCD是橋的主體,C為橋頂,并且曲線段BCD在圖紙上的圖形對(duì)應(yīng)函數(shù)的解析式為y=(x2,2),曲線段AB,DE均為開口向上的拋物線段,且A,E分別為兩拋物線的頂點(diǎn)設(shè)計(jì)時(shí)要求:保持兩曲線在各銜接處(B,D)的切線的斜率相等(1)曲線段AB在圖紙上對(duì)應(yīng)函數(shù)的解析式,并寫出定義域;(2)車輛從A經(jīng)B到C爬坡,定義車輛上橋過程中某點(diǎn)P所需要的爬坡能力為:M=(該點(diǎn)P與橋頂間的水平距離)(設(shè)計(jì)圖紙上該點(diǎn)P處的切線的斜率)其中MP的單位:米若該景區(qū)可提供三種類型的觀光車:游客踏乘;蓄電
11、池動(dòng)力;內(nèi)燃機(jī)動(dòng)力,它們的爬坡能力分別為0.8米,1.5米,2.0米,用已知圖紙上一個(gè)單位長度表示實(shí)際長度1米,試問三種類型的觀光車是否都可以順利過橋?參考答案:【分析】(1)設(shè)出方程,利用B為銜接點(diǎn),即可求出曲線段AB在圖紙上對(duì)應(yīng)函數(shù)的解析式,并寫出定義域;(2)分類討論,求最值,即可得出結(jié)論【解答】解:(1)由題意A為拋物線的頂點(diǎn),設(shè)A(a,0)(a2),則可設(shè)方程為y=(xa)2(ax2,0),y=2(xa)曲線段BCD在圖紙上的圖形對(duì)應(yīng)函數(shù)的解析式為y=(x2,2),y=,且B(2,1),則曲線在B處的切線斜率為,a=6,=,曲線段AB在圖紙上對(duì)應(yīng)函數(shù)的解析式為y=(6x2);(2)設(shè)P為曲線段AC上任意一點(diǎn)P在曲線段AB上,則通過該點(diǎn)所需
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 無人機(jī)測繪技術(shù)在建筑工程測量中的應(yīng)用
- 石河子大學(xué)《智能計(jì)算系統(tǒng)》2022-2023學(xué)年期末試卷
- 石河子大學(xué)《虛擬儀器》2021-2022學(xué)年第一學(xué)期期末試卷
- 婚外情檢討書(合集四篇)
- 石河子大學(xué)《外國刑法學(xué)原理》2022-2023學(xué)年期末試卷
- 石河子大學(xué)《入學(xué)教育與軍事技能》2023-2024學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《化工原理實(shí)驗(yàn)二》2021-2022學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《現(xiàn)代控制理論》2021-2022學(xué)年期末試卷
- 沈陽理工大學(xué)《汽車設(shè)計(jì)》2021-2022學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《計(jì)算機(jī)控制系統(tǒng)》2021-2022學(xué)年期末試卷
- 第五節(jié) 錯(cuò)覺課件
- 2024-2030年陜西省煤炭行業(yè)市場發(fā)展分析及發(fā)展前景預(yù)測研究報(bào)告
- 【課件】Unit+3+SectionB+1a-2b+課件人教版英語七年級(jí)上冊(cè)
- 干部人事檔案任前審核登記表范表
- 期中階段測試卷(六)-2024-2025學(xué)年語文三年級(jí)上冊(cè)統(tǒng)編版
- 北京市昌平區(qū)2023-2024學(xué)年高二上學(xué)期期末質(zhì)量抽測試題 政治 含答案
- 第7課《不甘屈辱奮勇抗?fàn)帯罚ǖ?課時(shí))(教學(xué)設(shè)計(jì))-部編版道德與法治五年級(jí)下冊(cè)
- 高校實(shí)驗(yàn)室安全基礎(chǔ)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 國開2024年《中國法律史》平時(shí)作業(yè)1-3答案
- 煙草專賣食堂燃?xì)庑孤都盎馂?zāi)事故現(xiàn)場應(yīng)急處置方案
- 國家電網(wǎng)公司十八項(xiàng)反措
評(píng)論
0/150
提交評(píng)論