版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
關(guān)于概率論與數(shù)理統(tǒng)計(jì)第五章第1頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五設(shè)非負(fù)r.v.
X的期望E(X)存在,則對于任意實(shí)數(shù)
>0,證
僅證連續(xù)型r.v.的情形
重要不等式
§5.1大數(shù)定律第2頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五設(shè)隨機(jī)變量
X的k階絕對原點(diǎn)矩E(|X|k)存在,則對于任意實(shí)數(shù)
>0,推論1設(shè)隨機(jī)變量
X的方差D(X)存在,則對于任意實(shí)數(shù)
>0,推論2——切貝雪夫(chebyshev)不等式或當(dāng)2D(X)
無實(shí)際意義,——馬爾可夫(Markov)不等式第3頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五例1設(shè)有一大批種子,其中良種占1/6.試估計(jì)在任選的6000粒種子中,良種所占比例與1/6比較上下小于1%的概率.解
設(shè)
X
表示6000粒種子中的良種數(shù),X~B(6000,1/6)第4頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五實(shí)際精確計(jì)算用Poisson分布近似計(jì)算取=1000第5頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五大數(shù)定律貝努里(Bernoulli)大數(shù)定律設(shè)
nA
是n
次獨(dú)立重復(fù)試驗(yàn)中事件A發(fā)生的次數(shù),p
是每次試驗(yàn)中A發(fā)生的概率,則有或第6頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五證
引入r.v.序列{Xk}設(shè)則相互獨(dú)立,記由Chebyshev不等式第7頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五故第8頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五在概率的統(tǒng)計(jì)定義中,事件A
發(fā)生的頻率“穩(wěn)定于”事件A在一次試驗(yàn)中發(fā)生的概率是指:頻率與
p
有較大偏差是小概率事件,因而在n
足夠大時,可以用頻率近似代替p.這種穩(wěn)定稱為依概率穩(wěn)定.貝努里(Bernoulli)大數(shù)定律的意義第9頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五定義a
是一常數(shù),(或則稱r.v.序列依概率收斂于常數(shù)a,記作故是一系列r.v.設(shè)有若第10頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五在Bernoulli定理的證明過程中,Yn
是相互獨(dú)立的服從(0,1)分布的r.v.序列{Xk}的算術(shù)平均值,Yn
依概率收斂于其數(shù)學(xué)期望
p.
結(jié)果同樣適用于服從其它分布的獨(dú)立r.v.序列第11頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五Chebyshev大數(shù)定律相互獨(dú)立,設(shè)r.v.序列(指任意給定n>1,
相互獨(dú)立)且具有相同的數(shù)學(xué)期望和方差則有或第12頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五定理的意義當(dāng)
n
足夠大時,算術(shù)平均值幾乎是一常數(shù).具有相同數(shù)學(xué)期望和方差的獨(dú)立r.v.序列的算術(shù)平均值依概率收斂于數(shù)學(xué)期望.算術(shù)均值數(shù)學(xué)期望近似代替可被第13頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五注2相互獨(dú)立的條件可以去掉,代之以注1不一定有相同的數(shù)學(xué)期望與方差,可設(shè)有第14頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五相設(shè)r.v.序列則有互獨(dú)立具有相同的分布,且記注3第15頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五則則連續(xù),若第16頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五第二節(jié)中心極限定理一、問題的引入二、基本定理三、典型例題四、小結(jié)第17頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五一、問題的引入實(shí)例:考察射擊命中點(diǎn)與靶心距離的偏差.這種偏差是大量微小的偶然因素造成的微小誤差的總和,這些因素包括:瞄準(zhǔn)誤差、測量誤差、子彈制造過程方面(如外形、重量等)的誤差以及射擊時武器的振動、氣象因素(如風(fēng)速、風(fēng)向、能見度、溫度等)的作用,所有這些不同因素所引起的微小誤差是相互獨(dú)立的,并且它們中每一個對總和產(chǎn)生的影響不大.問題:某個隨機(jī)變量是由大量相互獨(dú)立且均勻小的隨機(jī)變量相加而成的,研究其概率分布情況.第18頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五二、基本定理定理四(獨(dú)立同分布的中心極限定理)第19頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五定理四表明:第20頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五李雅普諾夫定理五(李雅普諾夫定理)第21頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五則隨機(jī)變量之和的標(biāo)準(zhǔn)化變量第22頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五定理五表明:(如實(shí)例中射擊偏差服從正態(tài)分布)下面介紹的定理六是定理四的特殊情況.第23頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五證明根據(jù)第四章第二節(jié)例題可知德莫佛拉普拉斯定理六(德莫佛-拉普拉斯定理)第24頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五根據(jù)定理四得定理六表明:正態(tài)分布是二項(xiàng)分布的極限分布,當(dāng)n充分大時,可以利用該定理來計(jì)算二項(xiàng)分布的概率.第25頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五下面的圖形表明:正態(tài)分布是二項(xiàng)分布的逼近.第26頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五三、典型例題解由定理四,隨機(jī)變量Z近似服從正態(tài)分布N(0,1),例1第27頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五其中第28頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五一船舶在某海區(qū)航行,已知每遭受一次海浪的沖擊,縱搖角大于3o的概率為1/3,若船舶遭受了90000次波浪沖擊,問其中有29500~30500次縱搖角大于3o的概率是多少?解將船舶每遭受一次海浪的沖擊看作一次試驗(yàn),并假設(shè)各次試驗(yàn)是獨(dú)立的,在90000次波浪沖擊中縱搖角大于3o的次數(shù)為X,則X是一個隨機(jī)變量,例2第29頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五所求概率為分布律為直接計(jì)算很麻煩,利用德莫佛-拉普拉斯定理第30頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五第31頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五某保險(xiǎn)公司的老年人壽保險(xiǎn)有1萬人參加,每人每年交200元.若老人在該年內(nèi)死亡,公司付給家屬1萬元.設(shè)老年人死亡率為0.017,試求保險(xiǎn)公司在一年內(nèi)的這項(xiàng)保險(xiǎn)中虧本的概率.解設(shè)X為一年中投保老人的死亡數(shù),由德莫佛-拉普拉斯定理知,例3第32頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五保險(xiǎn)公司虧本的概率第33頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五對于一個學(xué)生而言,來參加家長會的家長人數(shù)是一個隨機(jī)變量.設(shè)一個學(xué)生無家長、1名家長、2名家長來參加會議的概率分別為0.05,0.8,0.15.若學(xué)校共有400名學(xué)生,設(shè)各學(xué)生參加會議的家長數(shù)相互獨(dú)立,且服從同一分布.(1)求參加會議的家長數(shù)X超過450的概率;(2)求有1名家長來參加會議的學(xué)生數(shù)不多于340的概率.解例4第34頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五根據(jù)獨(dú)立同分布的中心極限定理,第35頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五第36頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五由德莫佛-拉普拉斯定理知,第37頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五證例5第38頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五根據(jù)獨(dú)立同分布的中心極限定理,第39頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五第40頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五四、小結(jié)三個中心極限定理獨(dú)立同分布的中心極限定理李雅普諾夫定理德莫佛-拉普拉斯定理中心極限定理表明,在相當(dāng)一般的條件下,當(dāng)獨(dú)立隨機(jī)變量的個數(shù)增加時,其和的分布趨于正態(tài)分布.
第41頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五李雅普諾夫資料AleksandrMikhailovichLyapunovBorn:6Jun.1857inYaroslavl,Russia
Died:3Nov.1918inOdessa,Russia第42頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五德莫佛資料AbrahamdeMoivreBorn:26May.1667inVitry(nearParis),France
Died:27Nov.1754inLondon,England第43頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五拉普拉斯資料Pierre-SimonLaplaceBorn:23Mar.1749inBeaumont-en-Auge,Normandy,France
Died:5Mar.1827inParis,France第44頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五第五章大數(shù)定律及中心極限定理
習(xí)題課二、主要內(nèi)容三、典型例題一、重點(diǎn)與難點(diǎn)第45頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五一、重點(diǎn)與難點(diǎn)1.重點(diǎn)中心極限定理及其運(yùn)用.2.難點(diǎn)證明隨機(jī)變量服從大數(shù)定律.第46頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五大數(shù)定律二、主要內(nèi)容中心極限定理定理一定理二定理三定理一的另一種表示定理一定理二定理三第47頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五契比雪夫定理的特殊情況第48頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五定理一的另一種表示第49頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五伯努利大數(shù)定理第50頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五辛欽定理第51頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五獨(dú)立同分布的中心極限定理第52頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五第53頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五李雅普諾夫定理第54頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五則隨機(jī)變量之和的標(biāo)準(zhǔn)化變量第55頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五德莫佛-拉普拉斯定理第56頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五三、典型例題解例1第57頁,共65頁,2022年,5月20日,3點(diǎn)59分,星期五根據(jù)獨(dú)立同分布的中心極限定理知的極限分布是標(biāo)準(zhǔn)正態(tài)分布.第58頁,共65頁,2022年,5月20日,3點(diǎn)59分,星
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度某數(shù)據(jù)中心水電暖安全保障服務(wù)合同4篇
- 二零二五年度奶牛養(yǎng)殖金融服務(wù)與風(fēng)險(xiǎn)管理合同3篇
- 2025版實(shí)木地板批發(fā)業(yè)務(wù)供應(yīng)合同范本4篇
- 二零二五年度木材行業(yè)原材料采購與倉儲服務(wù)合同4篇
- 2025年度門窗行業(yè)知識產(chǎn)權(quán)保護(hù)合同-@-2
- 二零二五年度卵石開采與環(huán)保治理采購合同3篇
- 二零二五年度農(nóng)藥產(chǎn)品國際貿(mào)易爭端解決合同
- 二零二五年度夜間經(jīng)濟(jì)攤位租賃管理合同
- 二零二五年度文化創(chuàng)意產(chǎn)業(yè)門面租賃合同范本4篇
- 二零二五年度外架工程高空作業(yè)人員培訓(xùn)合同
- 開展課外讀物負(fù)面清單管理的具體實(shí)施舉措方案
- 2025年云南中煙工業(yè)限責(zé)任公司招聘420人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025-2030年中國洗衣液市場未來發(fā)展趨勢及前景調(diào)研分析報(bào)告
- 2024解析:第三章物態(tài)變化-基礎(chǔ)練(解析版)
- 北京市房屋租賃合同自行成交版北京市房屋租賃合同自行成交版
- 《AM聚丙烯酰胺》課件
- 系統(tǒng)動力學(xué)課件與案例分析
- 《智能網(wǎng)聯(lián)汽車智能傳感器測試與裝調(diào)》電子教案
- 客戶分級管理(標(biāo)準(zhǔn)版)課件
- GB/T 32399-2024信息技術(shù)云計(jì)算參考架構(gòu)
- 固定資產(chǎn)盤點(diǎn)報(bào)告醫(yī)院版
評論
0/150
提交評論