版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,AB為⊙O的直徑,點C,D在⊙O上.若∠AOD=30°,則∠BCD等于()A.75° B.95° C.100° D.105°2.如圖1,點P從△ABC的頂點A出發(fā),沿A﹣B﹣C勻速運動,到點C停止運動.點P運動時,線段AP的長度y與運動時間x的函數(shù)關(guān)系如圖2所示,其中D為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.243.在中,,,,則的值為()A. B. C. D.4.已知拋物線具有如下性質(zhì):拋物線上任意一點到定點的距離與到軸的距離相等.如圖點的坐標為,是拋物線上一動點,則周長的最小值是()A. B. C. D.5.如圖,兩個菱形,兩個等邊三角形,兩個矩形,兩個正方形,各成一組,每組中的一個圖形在另一個圖形的內(nèi)部,對應(yīng)邊平行,且對應(yīng)邊之間的距離都相等,那么兩個圖形不相似的一組是()A. B. C. D.6.某校數(shù)學(xué)課外小組,在坐標紙上為某濕地公園的一塊空地設(shè)計植樹方案如下:第k棵樹種植在點Pk(xk,yk)處,其中x1=1,y1=1,且k≥2時,,[a]表示非負實數(shù)a的整數(shù)部分,例如[2.3]=2,,[1.5]=1.按此方案,第2119棵樹種植點的坐標應(yīng)為()A.(6,2121) B.(2119,5) C.(3,413) D.(414,4)7.如圖,在中,,兩個頂點在軸的上方,點的坐標是.以點為位似中心,在軸的下方作的位似圖形,使得的邊長是的邊長的2倍.設(shè)點的坐標是,則點的坐標是()A. B. C. D.8.經(jīng)過兩年時間,我市的污水利用率提高了.設(shè)這兩年污水利用率的平均增長率是,則列出的關(guān)于的一元二次方程為()A. B.C. D.9.在平面直角坐標系中,以原點為位似中心,位似比為:,將縮小,若點坐標,,則點對應(yīng)點坐標為()A., B. C.或, D.,或,10.已知兩個相似三角形的相似比為4:9,則這兩個三角形的對應(yīng)高的比為()A. B. C. D.11.小明在太陽光下觀察矩形木板的影子,不可能是()A.平行四邊形 B.矩形 C.線段 D.梯形12.如圖,已知一次函數(shù)y=ax+b與反比例函數(shù)y=圖象交于M、N兩點,則不等式ax+b>解集為()A.x>2或﹣1<x<0 B.﹣1<x<0C.﹣1<x<0或0<x<2 D.x>2二、填空題(每題4分,共24分)13.在平面直角坐標系中,將拋物線向左平移2個單位后頂點坐標為_______.14.如圖,Rt△ABC中,∠C=90°,若AC=4,BC=3,則△ABC的內(nèi)切圓半徑r=_____.15.如圖,在矩形ABCD中,AB=2,BC=4,點E、F分別在BC、CD上,若AE=,∠EAF=45°,則AF的長為_____.16.若點C是線段AB的黃金分割點且AC>BC,則AC=_____AB(用含無理數(shù)式子表示).17.若,,,則的度數(shù)為__________18.若圓錐的底面周長是10,側(cè)面展開后所得的扇形圓心角為90°,則該圓錐的側(cè)面積是__________。三、解答題(共78分)19.(8分)在Rt△ABC中,∠C=90°,AC=,BC=.解這個直角三角形.20.(8分)如圖是輸水管的切面,陰影部分是有水部分,其中水面AB寬10cm,水最深3cm,求輸水管的半徑.21.(8分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+6經(jīng)過點A(﹣3,0)和點B(2,0),直線y=h(h為常數(shù),且0<h<6)與BC交于點D,與y軸交于點E,與AC交于點F.(1)求拋物線的解析式;(2)連接AE,求h為何值時,△AEF的面積最大.(3)已知一定點M(﹣2,0),問:是否存在這樣的直線y=h,使△BDM是等腰三角形?若存在,請求出h的值和點D的坐標;若不存在,請說明理由.22.(10分)制作一種產(chǎn)品,需先將材料加熱達到60℃后,再進行操作.設(shè)該材料溫度為y(℃),從加熱開始計算的時間為x(分鐘).據(jù)了解,設(shè)該材料加熱時,溫度y與時間x成一次函數(shù)關(guān)系;停止加熱進行操作時,溫度y與時間x成反比例關(guān)系(如圖).已知該材料在操作加工前的溫度為15℃,加熱5分鐘后溫度達到60℃.(1)求將材料加熱時,y與x的函數(shù)關(guān)系式;(2)求停止加熱進行操作時,y與x的函數(shù)關(guān)系式;(3)根據(jù)工藝要求,當(dāng)材料的溫度低于15℃時,須停止操作,那么操作時間是多少?23.(10分)如圖,一次函數(shù)的圖象和反比例函數(shù)的圖象相交于兩點.(1)試確定一次函數(shù)與反比例函數(shù)的解析式;(2)求的面積;(3)結(jié)合圖象,直接寫出使成立的的取值范圍.24.(10分)某活動小組對函數(shù)的圖象性質(zhì)進行探究,請你也來參與(1)自變量的取值范圍是______;(2)表中列出了、的一些對應(yīng)值,則______;(3)依據(jù)表中數(shù)據(jù)畫出了函數(shù)圖象的一部分,請你把函數(shù)圖象補充完整;01233003(4)就圖象說明,當(dāng)方程共有4個實數(shù)根時,的取值范圍是______.25.(12分)如圖,的直徑垂直于弦,垂足為,為延長線上一點,且.(1)求證:為的切線;(2)若,,求的半徑.26.如圖1,拋物線與軸交于點,與軸交于點.(1)求拋物線的表達式;(2)點為拋物線的頂點,在軸上是否存在點,使?若存在,求出點的坐標;若不存在,說明理由;(3)如圖2,位于軸右側(cè)且垂直于軸的動直線沿軸正方向從運動到(不含點和點),分別與拋物線、直線以及軸交于點,過點作于點,求面積的最大值.
參考答案一、選擇題(每題4分,共48分)1、D【解析】試題解析:連接故選D.點睛:圓內(nèi)接四邊形的對角互補.2、B【解析】過點A作AM⊥BC于點M,由題意可知當(dāng)點P運動到點M時,AP最小,此時長為4,觀察圖象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,根據(jù)已知和圖象能確定出AB、AC的長,以及點P運動到與BC垂直時最短是解題的關(guān)鍵.3、A【分析】根據(jù)勾股定理求出AB,根據(jù)余弦的定義計算即可.【詳解】由勾股定理得,,則,
故選:A.【點睛】本題考查的是銳角三角函數(shù)的定義,掌握銳角A的鄰邊b與斜邊c的比叫做∠A的余弦是解題的關(guān)鍵.4、C【分析】作過作軸于點,過點作軸于點,交拋物線于點,由結(jié)合,結(jié)合點到直線之間垂線段最短及MF為定值,即可得出當(dāng)點P運動到點P′時,△PMF周長取最小值,再由點、的坐標即可得出、的長度,進而得出周長的最小值.【詳解】解:作過作軸于點,由題意可知:,∴周長=,又∵點到直線之間垂線段最短,∴當(dāng)、、三點共線時最小,此時周長取最小值,過點作軸于點,交拋物線于點,此時周長最小值,、,,,周長的最小值.故選:.【點睛】本題考查了二次函數(shù)的性質(zhì)、二次函數(shù)圖象上點的坐標特征以及點到直線的距離,根據(jù)點到直線之間垂線段最短找出△PMF周長的取最小值時點P的位置是解題的關(guān)鍵.5、C【分析】根據(jù)相似多邊形的性質(zhì)逐一進行判斷即可得答案.【詳解】由題意得,A.菱形四條邊均相等,所以對應(yīng)邊成比例,對應(yīng)邊平行,所以角也相等,所以兩個菱形相似,B.等邊三角形對應(yīng)角相等,對應(yīng)邊成比例,所以兩個等邊三角形相似;C.矩形四個角相等,但對應(yīng)邊不一定成比例,所以B中矩形不是相似多邊形D.正方形四條邊均相等,所以對應(yīng)邊成比例,四個角也相等,所以兩個正方形相似;故選C.【點睛】本題考查相似多邊形的判定,其對應(yīng)角相等,對應(yīng)邊成比例.兩個條件缺一不可.6、D【分析】根據(jù)已知分別求出1≤k≤5時,P點坐標為(1,1)、(1,2)、(1,3)、(1,4)、(1,5),當(dāng)6≤k≤11時,P點坐標為(2,1)、(2,2)、(2,3)、(2,4)、(2,5),通過觀察得到點的坐標特點,進而求解.【詳解】解:由題可知1≤k≤5時,P點坐標為(1,1)、(1,2)、(1,3)、(1,4)、(1,5),當(dāng)6≤k≤11時,P點坐標為(2,1)、(2,2)、(2,3)、(2,4)、(2,5),……通過以上數(shù)據(jù)可得,P點的縱坐標5個一組循環(huán),∵2119÷5=413…4,∴當(dāng)k=2119時,P點的縱坐標是4,橫坐標是413+1=414,∴P(414,4),故選:D.【點睛】本題考查點的坐標和探索規(guī)律;能夠理解題意,通過已知條件探索點的坐標循環(huán)規(guī)律是解題的關(guān)鍵.7、A【分析】作BD⊥x軸于D,B′E⊥x軸于E,根據(jù)相似三角形的性質(zhì)求出CE,B′E的長,得到點B′的坐標.【詳解】作BD⊥x軸于D,B′E⊥x軸于E,∵點的坐標是,點的坐標是,∴CD=2,BD=,由題意得:C∽△,相似比為1:2,∴,∴CE=4,B′E=1,∴點B′的坐標為(3,-1),故選:A.【點睛】本題考查了位似變換、坐標與圖形性質(zhì),熟練掌握位似變換的性質(zhì)是解答的關(guān)鍵.8、A【分析】設(shè)這兩年污水利用率的平均增長率是,原有污水利用率為1,利用原有污水利用率(1+平均每年污水利用率的增長率=污水利用率,列方程即可.【詳解】解:設(shè)這兩年污水利用率的平均增長率是,由題意得出:故答案為:A.【點睛】本題考查的知識點是用一元二次方程解決實際問題,解題的關(guān)鍵是根據(jù)題目找出等量關(guān)系式,再列方程.9、C【分析】若位似比是k,則原圖形上的點,經(jīng)過位似變化得到的對應(yīng)點的坐標是或.【詳解】∵以原點O為位似中心,位似比為1:2,將縮小,∴點對應(yīng)點的坐標為:或.
故選:C.【點睛】本題考查了位似圖形與坐標的關(guān)系.此題比較簡單,注意在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為,那么位似圖形對應(yīng)點的坐標比等于.10、B【分析】根據(jù)相似三角形的性質(zhì)即可得出答案.【詳解】根據(jù)“相似三角形對應(yīng)高的比等于相似比”可得對應(yīng)高的比為4:9,故答案選擇B.【點睛】本題考查相似三角形的性質(zhì),相似三角形對應(yīng)邊、對應(yīng)高、對應(yīng)中線以及周長比都等于相似比.11、D【分析】根據(jù)平行投影的特點可確定矩形木板與地面平行且與光線垂直時所成的投影為矩形;當(dāng)矩形木板與光線方向平行且與地面垂直時所成的投影為一條線段;除以上兩種情況矩形在地面上所形成的投影均為平行四邊形,據(jù)此逐一判斷即可得答案.【詳解】A.將木框傾斜放置形成的影子為平行四邊形,故該選項不符合題意,B.將矩形木框與地面平行放置時,形成的影子為矩形,故該選項不符合題意,C.將矩形木框立起與地面垂直放置時,形成的影子為線段,D.∵由物體同一時刻物高與影長成比例,且矩形對邊相等,梯形兩底不相等,∴得到投影不可能是梯形,故該選項符合題意,故選:D.【點睛】本題考查了平行投影特點:在同一時刻,不同物體的物高和影長成比例,平行物體的影子仍舊平行或重合.靈活運用平行投影的性質(zhì)是解題的關(guān)鍵.12、A【解析】根據(jù)函數(shù)圖象寫出一次函數(shù)圖象在反比例函數(shù)圖象上方部分的x的取值范圍即可.【詳解】解:由圖可知,x>2或﹣1<x<0時,ax+b>.故選A.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點,利用數(shù)形結(jié)合,準確識圖是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)變換前后的兩拋物線的頂點坐標找變換規(guī)律.【詳解】解:y=(x+5)(x-3)=(x+1)2-16,頂點坐標是(-1,-16).所以,拋物線y=(x+5)(x-3)向左平移2個單位長度后的頂點坐標為(-1-2,-16),即(-3,-16),故答案為:(-3,-16)【點睛】此題主要考查了二次函數(shù)圖象與幾何變換,要求熟練掌握平移的規(guī)律:左加右減,上加下減.14、1【解析】如圖,設(shè)△ABC的內(nèi)切圓與各邊相切于D,E,F(xiàn),連接OD,OE,OF,則OE⊥BC,OF⊥AB,OD⊥AC,設(shè)半徑為r,CD=r,∵∠C=90°,AC=4,BC=3,∴AB=5,∴BE=BF=3﹣r,AF=AD=4﹣r,∴4﹣r+3﹣r=5,∴r=1,∴△ABC的內(nèi)切圓的半徑為1,故答案為1.15、【解析】分析:取AB的中點M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,則NF=x,再利用矩形的性質(zhì)和已知條件證明△AME∽△FNA,利用相似三角形的性質(zhì):對應(yīng)邊的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的長.詳解:取AB的中點M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,∵四邊形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案為.點睛:本題考查了矩形的性質(zhì)、相似三角形的判斷和性質(zhì)以及勾股定理的運用,正確添加輔助線構(gòu)造相似三角形是解題的關(guān)鍵,16、【分析】直接利用黃金分割的定義求解.【詳解】解:∵點C是線段AB的黃金分割點且AC>BC,∴AC=AB.故答案為:.【點睛】本題考查了黃金分割的定義,點C是線段AB的黃金分割點且AC>BC,則,正確理解黃金分割的定義是解題的關(guān)鍵.17、【分析】先根據(jù)三角形相似求,再根據(jù)三角形內(nèi)角和計算出的度數(shù).【詳解】解:如圖:∵∠A=50°,,
∴∵,
∴
故答案為.【點睛】本題考查了相似三角形的性質(zhì):相似三角形的對應(yīng)角相等.18、100π【分析】圓錐側(cè)面展開圖的弧長=底面周長,利用弧長公式即可求得圓錐母線長,那么圓錐的側(cè)面積=底面周長×母線長÷1.【詳解】解:設(shè)扇形半徑為R.
∵底面周長是10π,扇形的圓心角為90°,
∴10π=×1πR,∴R=10,
∴側(cè)面積=×10π×10=100π,
故選:C.【點睛】本題利用了圓的周長公式和扇形面積公式求解.三、解答題(共78分)19、,,.【分析】根據(jù)題意和題目中的數(shù)據(jù),利用勾股定理,可以求得AB的長,根據(jù)銳角三角函數(shù)可以求得∠A的度數(shù),進而求得∠B的度數(shù),本題得以解決.【詳解】∵,,,∴,.∴,.∴.答:,,.【點睛】本題考查解直角三角形,解答本題的關(guān)鍵是明確題意,利用勾股定理和數(shù)形結(jié)合的思想解答.20、cm【分析】設(shè)圓形切面的半徑為r,過點O作OD⊥AB于點D,交⊙O于點E,由垂徑定理可求出BD的長,再根據(jù)最深地方的高度是3cm得出OD的長,根據(jù)勾股定理即可求出OB的長.【詳解】解:設(shè)圓形切面的半徑為,過點O作OD⊥AB于點D,交⊙O于點E,則AD=BD=AB=×10=5cm,∵最深地方的高度是3cm,∴OD=﹣3,在Rt△OBD中,OB2=BD2+OD2,即=52+(﹣3)2,解得=(cm),∴輸水管的半徑為cm.【點睛】本題考查了垂徑定理,構(gòu)造圓中的直角三角形,靈活利用垂徑定理是解題的關(guān)鍵.21、(1)y=﹣x2﹣x+1;(2)當(dāng)h=3時,△AEF的面積最大,最大面積是.(3)存在,當(dāng)h=時,點D的坐標為(,);當(dāng)h=時,點D的坐標為(,).【分析】(1)利用待定系數(shù)法即可解決問題.(2)由題意可得點E的坐標為(0,h),點F的坐標為(,h),根據(jù)S△AEF=?OE?FE=?h?=﹣(h﹣3)2+.利用二次函數(shù)的性質(zhì)即可解決問題.(3)存在.分兩種情形情形,分別列出方程即可解決問題.【詳解】解:如圖:(1)∵拋物線y=ax2+bx+1經(jīng)過點A(﹣3,0)和點B(2,0),∴,解得:.∴拋物線的解析式為y=﹣x2﹣x+1.(2)∵把x=0代入y=﹣x2﹣x+1,得y=1,∴點C的坐標為(0,1),設(shè)經(jīng)過點A和點C的直線的解析式為y=mx+n,則,解得,∴經(jīng)過點A和點C的直線的解析式為:y=2x+1,∵點E在直線y=h上,∴點E的坐標為(0,h),∴OE=h,∵點F在直線y=h上,∴點F的縱坐標為h,把y=h代入y=2x+1,得h=2x+1,解得x=,∴點F的坐標為(,h),∴EF=.∴S△AEF=?OE?FE=?h?=﹣(h﹣3)2+,∵﹣<0且0<h<1,∴當(dāng)h=3時,△AEF的面積最大,最大面積是.(3)存在符合題意的直線y=h.∵B(2,0),C(0,1),∴直線BC的解析式為y=﹣3x+1,設(shè)D(m,﹣3m+1).①當(dāng)BM=BD時,(m﹣2)2+(﹣3m+1)2=42,解得m=或(舍棄),∴D(,),此時h=.②當(dāng)MD=BM時,(m+2)2+(﹣3m+1)2=42,解得m=或2(舍棄),∴D(,),此時h=.∵綜上所述,存在這樣的直線y=或y=,使△BDM是等腰三角形,當(dāng)h=時,點D的坐標為(,);當(dāng)h=時,點D的坐標為(,).【點睛】此題考查了待定系數(shù)法求函數(shù)的解析式、二次函數(shù)的性質(zhì)、等腰三角形的性質(zhì)、勾股定理一次函數(shù)的應(yīng)用等知識,此題難度較大,注意掌握方程思想、分類討論思想與數(shù)形結(jié)合思想的應(yīng)用.22、(1)y=9x+15;(2)y=;(3)15分鐘【解析】(1)設(shè)加熱時y=kx+b(k≠0),停止加熱后y=a/x(a≠0),把b=15,(5,60)代入求解(2)把y=15代入反比例函數(shù)求得23、(1)反比例函數(shù)的解析式為,一次函數(shù)的解析式為;(2)8;(3)或.【分析】(1)將點A代入反比例函數(shù)中求出反比例函數(shù)的解析式,再根據(jù)反比例函數(shù)求出點B的坐標,最后將A和B的坐標代入一次函數(shù)解析式中求出一次函數(shù)的解析式;(2)求出一次函數(shù)與x軸的交點坐標,再利用割補法得到,即可得出答案;(3)根據(jù)圖像判斷即可得出答案.【詳解】解:(1)∵在反比例函數(shù)的圖象上,∴,則反比例函數(shù)的解析式為.將代入,得,∴.將兩點的坐標分別代入,得解得則一次函數(shù)的解析式為.(2)設(shè)一次函數(shù)的圖象與軸的交點為.在中,令,得,∴,即,則.(3)∵即一次函數(shù)的圖像在反比例函數(shù)的圖像的上方∴或.【點睛】本題考查的是一次函數(shù)與反比例函數(shù)的綜合,難度不高,需要熟練掌握一次函數(shù)與反比例函數(shù)的圖像與性質(zhì).24、(1)全體實數(shù);(2)1;(3)見解析;(4).【分析】(1)自變量沒有限制,故自變量取值范圍是全體實數(shù);(2)把x=-2代入函數(shù)解釋式即可得m的值;(3)描點、連線即可得到函數(shù)的圖象;(4)根據(jù)函數(shù)的圖象即可得到a的取值范圍是-1<a<1.【詳解】(1)自變量沒有限制,故自變量取值范圍是全體實數(shù);(2)當(dāng)x=-2時,∴m=1(3)如圖所示(4)當(dāng)方程共有4個實數(shù)根時,y軸左右兩邊應(yīng)該都有2個交點,也就是圖象x軸下半部分,此時-1<a<1;故答案為:(1)全體實數(shù);(2)1;(3)見解析;(4).【點睛】本題考查了二次函數(shù)的圖象和性質(zhì),正確的識別圖象是解題的關(guān)鍵.25、(1)見解析;(2)【分析】(1)連接OB,根據(jù)圓周角定理證得∠CBD=90°,然后根據(jù)等邊對等角以及等量代換,證得∠OBF=90°即可證得;(2)首先利用垂徑定理求得BE的長,根據(jù)勾股定理求得圓的半徑.【詳解】(1)連接OB.∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 光伏儲能合同能源管理模式(emc)測算表
- 廣西建設(shè)工程專用合同條款
- 海上貨運代理合同 答辯狀
- 合同到期搬離通知書
- 大班數(shù)學(xué)認識半點課件
- 專項8 非連續(xù)性文本閱讀- 2022-2023學(xué)年五年級語文下冊期末專項練習(xí)
- 2024普通軟件產(chǎn)品銷售合同
- 2024公司借款保證合同范本
- 深圳大學(xué)《印度文化遺產(chǎn)賞析》2021-2022學(xué)年第一學(xué)期期末試卷
- 菜苗栽種合同(2篇)
- 《臨床決策分析》課件.ppt
- 家風(fēng)家訓(xùn)PPT課件
- 淚道沖洗PPT學(xué)習(xí)教案
- 部編版六年級語文上冊詞語表(帶拼音)-六上冊詞語表連拼音
- 淺談校園影視在學(xué)校教育中的作用
- 無公害農(nóng)產(chǎn)品查詢
- 試劑、試藥、試液的管理規(guī)程
- 研究生課程應(yīng)用電化學(xué)(課堂PPT)
- 通信綜合網(wǎng)管技術(shù)規(guī)格書doc
- 六宮數(shù)獨可直接打印共192題
- 班會:如何克服浮躁心理PPT優(yōu)秀課件
評論
0/150
提交評論