江蘇省常州市常州高級中學2023學年高三(最后沖刺)數(shù)學試卷(含解析)_第1頁
江蘇省常州市常州高級中學2023學年高三(最后沖刺)數(shù)學試卷(含解析)_第2頁
江蘇省常州市常州高級中學2023學年高三(最后沖刺)數(shù)學試卷(含解析)_第3頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023學年高考數(shù)學模擬測試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若為純虛數(shù),則z=()A. B.6i C. D.202.在區(qū)間上隨機取一個數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.113.在等差數(shù)列中,若,則()A.8 B.12 C.14 D.104.過橢圓的左焦點的直線過的上頂點,且與橢圓相交于另一點,點在軸上的射影為,若,是坐標原點,則橢圓的離心率為()A. B. C. D.5.函數(shù)的部分圖像大致為()A. B.C. D.6.若,則函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是()A.B.C.D.7.已知等差數(shù)列的前項和為,,,則()A.25 B.32 C.35 D.408.已知數(shù)列的前項和為,且,,,則的通項公式()A. B. C. D.9.為研究語文成績和英語成績之間是否具有線性相關(guān)關(guān)系,統(tǒng)計兩科成績得到如圖所示的散點圖(兩坐標軸單位長度相同),用回歸直線近似地刻畫其相關(guān)關(guān)系,根據(jù)圖形,以下結(jié)論最有可能成立的是()A.線性相關(guān)關(guān)系較強,b的值為1.25B.線性相關(guān)關(guān)系較強,b的值為0.83C.線性相關(guān)關(guān)系較強,b的值為-0.87D.線性相關(guān)關(guān)系太弱,無研究價值10.在展開式中的常數(shù)項為A.1 B.2 C.3 D.711.當輸入的實數(shù)時,執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.12.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.84二、填空題:本題共4小題,每小題5分,共20分。13.已知,若的展開式中的系數(shù)比x的系數(shù)大30,則______.14.已知向量,,且,則________.15.在平面直角坐標系中,點的坐標為,點是直線:上位于第一象限內(nèi)的一點.已知以為直徑的圓被直線所截得的弦長為,則點的坐標__________.16.某校開展“我身邊的榜樣”評選活動,現(xiàn)對3名候選人甲、乙、丙進行不記名投票,投票要求詳見選票.這3名候選人的得票數(shù)(不考慮是否有效)分別為總票數(shù)的88%,75%,46%,則本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為百分之________.“我身邊的榜樣”評選選票候選人符號注:1.同意畫“○”,不同意畫“×”.2.每張選票“○”的個數(shù)不超過2時才為有效票.甲乙丙三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,均為正數(shù),且.證明:(1);(2).18.(12分)在,角、、所對的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.19.(12分)在銳角中,分別是角的對邊,,,且.(1)求角的大?。唬?)求函數(shù)的值域.20.(12分)已知函數(shù)是自然對數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個極值點,求的取值范圍,并證明:.21.(12分)設(shè)函數(shù).(1)當時,求不等式的解集;(2)若恒成立,求的取值范圍.22.(10分)某工廠,兩條相互獨立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過日常監(jiān)控得知,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為和.(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.(2)假設(shè)不合格的產(chǎn)品均可進行返工修復為合格品,以(1)中確定的作為的值.①已知,生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回損失元和元.若從兩條生產(chǎn)線上各隨機抽檢件產(chǎn)品,以挽回損失的平均數(shù)為判斷依據(jù),估計哪條生產(chǎn)線挽回的損失較多?②若最終的合格品(包括返工修復后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機抽取件進行檢測,結(jié)果統(tǒng)計如下圖;用樣本的頻率分布估計總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為,求的分布列并估算該廠產(chǎn)量件時利潤的期望值.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【答案解析】

根據(jù)復數(shù)的乘法運算以及純虛數(shù)的概念,可得結(jié)果.【題目詳解】∵為純虛數(shù),∴且得,此時故選:C.【答案點睛】本題考查復數(shù)的概念與運算,屬基礎(chǔ)題.2、D【答案解析】

由題意,本題符合幾何概型,只要求出區(qū)間的長度以及使不等式成立的的范圍區(qū)間長度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【題目詳解】由題意,本題符合幾何概型,區(qū)間長度為6,使得成立的的范圍為,區(qū)間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【答案點睛】該題考查的是有關(guān)幾何概型與等差數(shù)列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數(shù)列的通項公式,屬于基礎(chǔ)題目.3、C【答案解析】

將,分別用和的形式表示,然后求解出和的值即可表示.【題目詳解】設(shè)等差數(shù)列的首項為,公差為,則由,,得解得,,所以.故選C.【答案點睛】本題考查等差數(shù)列的基本量的求解,難度較易.已知等差數(shù)列的任意兩項的值,可通過構(gòu)建和的方程組求通項公式.4、D【答案解析】

求得點的坐標,由,得出,利用向量的坐標運算得出點的坐標,代入橢圓的方程,可得出關(guān)于、、的齊次等式,進而可求得橢圓的離心率.【題目詳解】由題意可得、.由,得,則,即.而,所以,所以點.因為點在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【答案點睛】本題考查橢圓離心率的求解,解答的關(guān)鍵就是要得出、、的齊次等式,充分利用點在橢圓上這一條件,圍繞求點的坐標來求解,考查計算能力,屬于中等題.5、A【答案解析】

根據(jù)函數(shù)解析式,可知的定義域為,通過定義法判斷函數(shù)的奇偶性,得出,則為偶函數(shù),可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【題目詳解】解:因為,所以的定義域為,則,∴為偶函數(shù),圖象關(guān)于軸對稱,排除選項,且當時,,排除選項,所以正確.故選:A.【答案點睛】本題考查由函數(shù)解析式識別函數(shù)圖象,利用函數(shù)的奇偶性和特殊值法進行排除.6、B【答案解析】函數(shù)在區(qū)間內(nèi)單調(diào)遞增,,在恒成立,在恒成立,,函數(shù)在區(qū)間內(nèi)單調(diào)遞增的概率是,故選B.7、C【答案解析】

設(shè)出等差數(shù)列的首項和公差,即可根據(jù)題意列出兩個方程,求出通項公式,從而求得.【題目詳解】設(shè)等差數(shù)列的首項為,公差為,則,解得,∴,即有.故選:C.【答案點睛】本題主要考查等差數(shù)列的通項公式的求法和應用,涉及等差數(shù)列的前項和公式的應用,屬于容易題.8、C【答案解析】

利用證得數(shù)列為常數(shù)列,并由此求得的通項公式.【題目詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數(shù)列,所以,故.故選:C【答案點睛】本小題考查數(shù)列的通項與前項和的關(guān)系等基礎(chǔ)知識;考查運算求解能力,邏輯推理能力,應用意識.9、B【答案解析】

根據(jù)散點圖呈現(xiàn)的特點可以看出,二者具有相關(guān)關(guān)系,且斜率小于1.【題目詳解】散點圖里變量的對應點分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強的線性相關(guān)關(guān)系,且直線斜率小于1,故選B.【答案點睛】本題主要考查散點圖的理解,側(cè)重考查讀圖識圖能力和邏輯推理的核心素養(yǎng).10、D【答案解析】

求出展開項中的常數(shù)項及含的項,問題得解?!绢}目詳解】展開項中的常數(shù)項及含的項分別為:,,所以展開式中的常數(shù)項為:.故選:D【答案點睛】本題主要考查了二項式定理中展開式的通項公式及轉(zhuǎn)化思想,考查計算能力,屬于基礎(chǔ)題。11、A【答案解析】

根據(jù)循環(huán)結(jié)構(gòu)的運行,直至不滿足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結(jié)論.【題目詳解】程序框圖共運行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【答案點睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果、幾何概型的概率,模擬程序運行是解題的關(guān)鍵,屬于基礎(chǔ)題.12、B【答案解析】

畫出幾何體的直觀圖,計算表面積得到答案.【題目詳解】該幾何體的直觀圖如圖所示:故.故選:.【答案點睛】本題考查了根據(jù)三視圖求表面積,意在考查學生的計算能力和空間想象能力.二、填空題:本題共4小題,每小題5分,共20分。13、2【答案解析】

利用二項展開式的通項公式,二項式系數(shù)的性質(zhì),求得的值.【題目詳解】展開式通項為:且的展開式中的系數(shù)比的系數(shù)大,即:解得:(舍去)或本題正確結(jié)果:【答案點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.14、【答案解析】

根據(jù)垂直向量的坐標表示可得出關(guān)于實數(shù)的等式,即可求得實數(shù)的值.【題目詳解】,且,則,解得.故答案為:.【答案點睛】本題考查利用向量垂直求參數(shù),涉及垂直向量的坐標表示,考查計算能力,屬于基礎(chǔ)題.15、【答案解析】

依題意畫圖,設(shè),根據(jù)圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點間的距離公式即可求出,進而得出點坐標.【題目詳解】解:依題意畫圖,設(shè)以為直徑的圓被直線所截得的弦長為,且,又因為為圓的直徑,則所對的圓周角,則,則為點到直線:的距離.所以,則.又因為點在直線:上,設(shè),則.解得,則.故答案為:【答案點睛】本題考查了直線與圓的位置關(guān)系,考查了兩點間的距離公式,點到直線的距離公式,是基礎(chǔ)題.16、91【答案解析】

設(shè)共有選票張,且票對應張數(shù)為,由此可構(gòu)造不等式組化簡得到,由投票有效率越高越小,可知,由此計算可得投票有效率.【題目詳解】不妨設(shè)共有選票張,投票的有,票的有,票的有,則由題意可得:,化簡得:,即,投票有效率越高,越小,則,,故本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為.故答案為:.【答案點睛】本題考查線性規(guī)劃的實際應用問題,關(guān)鍵是能夠根據(jù)已知條件構(gòu)造出變量所滿足的關(guān)系式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【答案解析】

(1)由進行變換,得到,兩邊開方并化簡,證得不等式成立.(2)將化為,然后利用基本不等式,證得不等式成立.【題目詳解】(1),兩邊加上得,即,當且僅當時取等號,∴.(2).當且僅當時取等號.【答案點睛】本小題主要考查利用基本不等式證明不等式成立,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.18、(1)(2)答案不唯一,見解析【答案解析】

(1)由題意根據(jù)和差角的三角函數(shù)公式可得,再根據(jù)同角三角函數(shù)基本關(guān)系可得的值;(2)在中,由余弦定理可得,解方程分別由三角形面積公式可得答案.【題目詳解】解:(1)在中,因為,又已知,所以,因為,所以,于是.所以.(2)在中,由余弦定理得,得解得或,當時,的面積,當時,的面積.【答案點睛】本題考查正余弦定理理解三角形,涉及三角形的面積公式和分類討論思想,屬于中檔題.19、(1);(2)【答案解析】

(1)由向量平行的坐標表示、正弦定理邊化角和兩角和差正弦公式可化簡求得,進而得到;(2)利用兩角和差余弦公式、二倍角和輔助角公式化簡函數(shù)為,根據(jù)的范圍可確定的范圍,結(jié)合正弦函數(shù)圖象可確定所求函數(shù)的值域.【題目詳解】(1),,由正弦定理得:,即,,,,又,.(2)在銳角中,,..,,,,函數(shù)的值域為.【答案點睛】本題考查三角恒等變換、解三角形和三角函數(shù)性質(zhì)的綜合應用問題;涉及到共線向量的坐標表示、利用三角恒等變換公式化簡求值、正弦定理邊化角的應用、正弦型函數(shù)值域的求解等知識.20、(1)減區(qū)間是,增區(qū)間是;(2),證明見解析.【答案解析】

(1)當時,求得函數(shù)的導函數(shù)以及二階導函數(shù),由此求得的單調(diào)區(qū)間.(2)令求得,構(gòu)造函數(shù),利用導數(shù)求得的單調(diào)區(qū)間、極值和最值,結(jié)合有兩個極值點,求得的取值范圍.將代入列方程組,由證得.【題目詳解】(1),,又,所以在單增,從而當時,遞減,當時,遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當時,所以當時,有一個極值點,當時,有兩個極值點,當時,沒有極值點,綜上因為是的兩個極值點,所以不妨設(shè),得,因為在遞減,且,所以又所以【答案點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導數(shù)研究函數(shù)的極值點,考查利用導數(shù)證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于難題.21、(1);(2).【答案解析】

分析:(1)先根據(jù)絕對值幾何意義將不等式化為三個不等式組,分別求解,最后求并集,(2)先化簡不等式為,再根據(jù)絕對值三角不等式得最小值,最后解不等式得的取值范圍.詳解:(1)當時,可得的解集為.(2)等價于.而,且當時等號成立.故等價于.由可得或,所以的取值范圍是.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應用,這是命題的新動向.22、(1)(2)①生產(chǎn)線上挽回的損失較多.②見解析【答案解析】

(1)由題意得到關(guān)于的不等式,求解不等式得到的取值范圍即可確定其最小值;(2)①.由題意利用二項分布的期望公式和數(shù)學期望的性質(zhì)給出結(jié)論即可;②.由題意首先確定X可能的取值,然后求得相應的概率值可得分布列,最后由分布列可得利潤的期望值.【題目詳解】(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論