版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.若△ABC∽△DEF,相似比為2:3,則對應面積的比為()A.3:2 B.3:5 C.9:4 D.4:92.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數為()A.25° B.20° C.15° D.30°3.如圖,河堤橫斷面迎水坡的坡比是,堤高,則坡面的長度是()A. B. C. D.4.一塊△ABC空地栽種花草,∠A=150°,AB=20m,AC=30m,則這塊空地可栽種花草的面積為()m2A.450 B.300 C.225 D.1505.已知反比例函數的圖象經過點,小良說了四句話,其中正確的是()A.當時, B.函數的圖象只在第一象限C.隨的增大而增大 D.點不在此函數的圖象上6.如圖,矩形ABCD的對角線AC,BD相交于點O,CE∥BD,DE∥AC,若OA=2,則四邊形CODE的周長為()A.4 B.6 C.8 D.107.如圖,AB,BC是⊙O的兩條弦,AO⊥BC,垂足為D,若⊙O的半徑為5,BC=8,則AB的長為()A.8 B.10 C. D.8.方程的根是()A. B. C. D.9.如圖,某水庫堤壩橫斷面迎水坡AB的坡比是1:,堤壩高BC=50m,則應水坡面AB的長度是()A.100m B.100m C.150m D.50m10.下列事件是必然事件的是()A.打開電視機,正在播放籃球比賽 B.守株待兔C.明天是晴天 D.在只裝有5個紅球的袋中摸出1球,是紅球.11.如圖,在Rt△ABC中,∠BAC=90°.將Rt△ABC繞點C按逆時針方向旋轉48°得到Rt△A′B′C,點A在邊B′C上,則∠B′的大小為()A.42° B.48°C.52° D.58°12.為了解圭峰會城九年級女生身高情況,隨機抽取了圭峰會城九年級100名女生,她們的身高x(cm)統(tǒng)計如下:組別(cm)x<150150≤x<155155≤x<160160≤x<165x≥165頻數22352185根據以上結果,隨機抽查圭峰會城九年級1名女生,身高不低于155cm的概率是()A.0.25 B.0.52 C.0.70 D.0.75二、填空題(每題4分,共24分)13.如圖,點O為正六邊形ABCDEF的中心,點M為AF中點,以點O為圓心,以OM的長為半徑畫弧得到扇形MON,點N在BC上;以點E為圓心,以DE的長為半徑畫弧得到扇形DEF,把扇形MON的兩條半徑OM,ON重合,圍成圓錐,將此圓錐的底面半徑記為r1;將扇形DEF以同樣方法圍成的圓錐的底面半徑記為r2,則r1:r2=_____.14.如果一個四邊形的某個頂點到其他三個頂點的距離相等,我們把這個四邊形叫做等距四邊形,這個頂點叫做這個四邊形的等距點.如圖,已知梯形ABCD是等距四邊形,AB∥CD,點B是等距點.若BC=10,cosA=,則CD的長等于_____.15.某毛絨玩具廠對一批毛絨玩具進行質量抽檢,相關數據如下:抽取的毛絨玩具數2151111211511111115112111優(yōu)等品的頻數19479118446292113791846優(yōu)等品的頻率1.9511.9411.9111.9211.9241.9211.9191.923從這批玩具中,任意抽取的一個毛絨玩具是優(yōu)等品的概率的估計值是__.(精確到16.△ABC與△DEF的相似比為1:4,則△ABC與△DEF的周長比為.17.在△ABC中,tanB=,BC邊上的高AD=6,AC=3,則BC長為_____.18.拋物線與軸交點坐標為______.三、解答題(共78分)19.(8分)如圖,將等邊△ABC繞點C順時針旋轉90°得到△EFC,∠ACE的平分線CD交EF于點D,連接AD、AF.(1)求∠CFA度數;(2)求證:AD∥BC.20.(8分)一次知識競賽中,有甲、乙、丙三名同學名次并列,但獎品只有兩份,誰應該得到獎品呢?他們決定用抽簽的方式來決定:取張大小、質地相同,分別標有數字的卡片,充分混勻后倒扣在桌子上,按甲、乙、丙的順序,每人從中任意抽取一張,取后不放回.規(guī)定抽到號或號卡片的人得到獎品.求甲、乙兩人同時得到獎品的概率.21.(8分)如圖所示,在平面直角坐標系中,拋物線的頂點坐標為,并與軸交于點,點是對稱軸與軸的交點.(1)求拋物線的解析式;(2)如圖①所示,是拋物線上的一個動點,且位于第一象限,連結BP、AP,求的面積的最大值;(3)如圖②所示,在對稱軸的右側作交拋物線于點,求出點的坐標;并探究:在軸上是否存在點,使?若存在,求點的坐標;若不存在,請說明理由.22.(10分)如圖,在和中,,點為射線,的交點.(1)問題提出:如圖1,若,.①與的數量關系為________;②的度數為________.(2)猜想論證:如圖2,若,則(1)中的結論是否成立?請說明理由.23.(10分)如圖,在△ABC中,AD是BC邊上的中線,且AD=AC,DE⊥BC,DE與AB相交于點E,EC與AD相交于點F.(1)求證:△ABC∽△FCD;(2)過點A作AM⊥BC于點M,求DE:AM的值;(3)若S△FCD=5,BC=10,求DE的長.24.(10分)化簡求值:,其中.25.(12分)如圖,在平面直角坐標系中,一次函數的圖像與反比例函數的圖像在第二象限交于點,與軸交于點,點在軸上,滿足條件:,且,點的坐標為,。(1)求反比例函數的表達式;(2)直接寫出當時,的解集。26.如圖.電路圖上有四個開關A、B、C、D和一個小燈泡,閉合開關D或同時閉合開關A,B,C都可使小燈泡發(fā)光.(1)任意閉合其中一個開關,則小燈泡發(fā)光的概率等于多少;(2)任意閉合其中兩個開關,請用畫樹狀圖或列表的方法求出小燈泡發(fā)光的概率.
參考答案一、選擇題(每題4分,共48分)1、D【解析】根據相似三角形的面積比等于相似比的平方解答.【詳解】解:∵△ABC∽△DEF,相似比為2:3,∴對應面積的比為()2=,故選:D.【點睛】本題考查相似三角形的性質,熟練掌握相似三角形的性質定理是解題的關鍵.2、A【分析】根據圓周角定理可得∠BAC=25°,又由AC∥OB,∠BAC=∠B=25°,再由等邊對等角即可求解答.【詳解】解:∵∠BOC=2∠BAC,∠BOC=50°,∴∠BAC=25°,又∵AC∥OB∴∠BAC=∠B=25°∵.OA=OB∴∠OAB=∠B=25°故答案為A.【點睛】本題考查了圓周角定理和平行線的性質,靈活應用所學定理以及數形結合思想的應用都是解答本題的關鍵.3、D【分析】直接利用坡比的定義得出AC的長,進而利用勾股定理得出答案.【詳解】∵河堤橫斷面迎水坡AB的坡比是,∴,∴,解得:AC=,故AB===8(m),故選:D.【點睛】此題主要考查了解直角三角形的應用,正確掌握坡比的定義是解題關鍵.4、D【分析】過點B作BE⊥AC,根據含30度角的直角三角形性質可求得BE,再根據三角形的面積公式求出答案.【詳解】過點B作BE⊥AC,交CA延長線于E,則∠E=90°,
∵,
∴,
∵在中,,,
∴,
∴這塊空地可栽種花草的面積為.故選:D【點睛】本題考查了含30度角的直角三角形性質和三角形的面積公式,是基礎知識比較簡單.5、D【分析】利用待定系數法求出k,即可根據反比例函數的性質進行判斷.【詳解】解:∵反比例函數的圖象經過點(3,2),∴k=2×3=6,∴,∴圖象在一、三象限,在每個象限y隨x的增大而減小,故A,B,C錯誤,∴點不在此函數的圖象上,選項D正確;故選:D.【點睛】本題考查反比例函數圖象上的點的特征,教育的關鍵是熟練掌握基本知識,屬于中考??碱}型.6、C【分析】首先由CE∥BD,DE∥AC,可證得四邊形CODE是平行四邊形,又由四邊形ABCD是矩形,根據矩形的性質,易得OC=OD=2,即可判定四邊形CODE是菱形,繼而求得答案.【詳解】解:∵CE∥BD,DE∥AC,
∴四邊形CODE是平行四邊形,
∵四邊形ABCD是矩形,
∴AC=BD,OA=OC=2,OB=OD,
∴OD=OC=2,
∴四邊形CODE是菱形,
∴四邊形CODE的周長為:4OC=4×2=1.
故選:C.【點睛】此題考查了菱形的判定與性質以及矩形的性質.此題難度不大,注意證得四邊形CODE是菱形是解此題的關鍵.7、D【分析】根據垂徑定理求出BD,根據勾股定理求出OD,求出AD,再根據勾股定理求出AB即可.【詳解】解:∵AO⊥BC,AO過O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD=,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB=,故選D.【點睛】本題考查了垂徑定理和勾股定理,能根據垂徑定理求出BD長是解此題的關鍵.8、D【分析】根據因式分解法,可得答案.【詳解】解:解得:,,故選:.【點睛】本題考查了解一元二次方程,因式分解是解題關鍵.注意此題中方程兩邊不能同時除以,因為可能為1.9、A【解析】∵堤壩橫斷面迎水坡AB的坡比是1:,∴,∵BC=50,∴AC=50,∴(m).故選A10、D【分析】根據必然事件、不可能事件、隨機事件的概念進行解答即可.【詳解】解:打開電視機,正在播放籃球比賽是隨機事件,不符合題意;守株待兔是隨機事件,不符合題意;明天是晴天是隨機事件,不符合題意在只裝有5個紅球的袋中摸出1球,是紅球是必然事件,D符合題意.故選:D.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.11、A【解析】試題分析:∵在Rt△ABC中,∠BAC=90°,將Rt△ABC繞點C按逆時針方向旋轉48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故選A.考點:旋轉的性質.12、D【分析】直接利用不低于155cm的頻數除以總數得出答案.【詳解】∵身高不低于155cm的有52+18+5=1(人),∴隨機抽查圭峰會城九年級1名女生,身高不低于155cm的概率是:=0.1.故選:D.【點睛】本題考查了概率公式,正確應用概率公式是解題關鍵.二、填空題(每題4分,共24分)13、【解析】分析:根據題意正六邊形中心角為120°且其內角為120°.求出兩個扇形圓心角,表示出扇形半徑即可.詳解:連OA由已知,M為AF中點,則OM⊥AF∵六邊形ABCDEF為正六邊形∴∠AOM=30°設AM=a∴AB=AO=2a,OM=∵正六邊形中心角為60°∴∠MON=120°∴扇形MON的弧長為:則r1=a同理:扇形DEF的弧長為:則r2=r1:r2=故答案為點睛:本題考查了正六邊形的性質和扇形面積及圓錐計算.解答時注意表示出兩個扇形的半徑.14、16【解析】如圖作BM⊥AD于M,DE⊥AB于E,BF⊥CD于F.易知四邊形BEDF是矩形,理由面積法求出DE,再利用等腰三角形的性質,求出DF即可解決問題.【詳解】連接BD,過點B分別作BM⊥AD于點M,BN⊥DC于點N,∵梯形ABCD是等距四邊形,點B是等距點,∴AB=BD=BC=10,∵=,∴AM=,∴BM==3,∵BM⊥AD,∴AD=2AM=2,∵AB//CD,∴S△ABD=,∴BN=6,∵BN⊥DC,∴DN==8,∴CD=2DN=16,故答案為16.15、1.92【分析】由表格中的數據可知優(yōu)等品的頻率在1.92左右擺動,利用頻率估計概率即可求得答案.【詳解】觀察可知優(yōu)等品的頻率在1.92左右,所以從這批玩具中,任意抽取的一個毛絨玩具是優(yōu)等品的概率的估計值是1.92,故答案為:1.92.【點睛】本題考查了利用頻率估計概率,大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,由此可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率的近似值,隨著實驗次數的增多,值越來越精確.16、1:1.【解析】試題分析:∵△ABC與△DEF的相似比為1:1,∴△ABC與△DEF的周長比為1:1.故答案為1:1.考點:相似三角形的性質.17、5或1【分析】分兩種情況:AC與AB在AD同側,AC與AB在AD的兩側,在Rt△ABD中,通過解直角三角形求得BD,用勾股定理求得CD,再由線段和差求BC便可.【詳解】解:情況一:當AC與AB在AD同側時,如圖1,
∵AD是BC邊上的高,AD=6,tanB=,AC=3
∴在Rt△ABD中,,在Rt△ACD中,利用勾股定理得∴BC=BD-CD=8-3=5;
情況二:當AC與AB在AD的兩側,如圖2,
∵AD是BC邊上的高,AD=6,tanB=,AC=3
∴在Rt△ABD中,,在Rt△ACD中,利用勾股定理得∴BC=BD+CD=8+3=1;
綜上,BC=5或1.
故答案為:5或1.【點睛】本題主要考查了解直角三角形的應用題,關鍵是分情況討論,比較基礎,容易出錯的地方是漏解.18、【分析】令x=0,求出y的值即可.【詳解】解:∵當x=0,則y=-1+3=2,∴拋物線與y軸的交點坐標為(0,2).【點睛】本題考查的是二次函數的性質,熟知y軸上點的特點,即y軸上的點的橫坐標為0是解答此題的關鍵.三、解答題(共78分)19、(1)75°(2)見解析【解析】(1)由等邊三角形的性質可得∠ACB=60°,BC=AC,由旋轉的性質可得CF=BC,∠BCF=90°,由等腰三角形的性質可求解;(2)由“SAS”可證△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可證AD∥BC.【詳解】解:(1)∵△ABC是等邊三角形∴∠ACB=60°,BC=AC∵等邊△ABC繞點C順時針旋轉90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等邊三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【點睛】本題考查了旋轉的性質,等邊三角形的性質,等腰三角形的性質,平行線的判定,熟練運用旋轉的性質是本題關鍵.20、【分析】根據題意畫樹狀圖求概率.【詳解】解:根據題意,畫樹狀圖為:三人抽簽共有種結果,且得到每種結果的可能性相同,其中甲和乙都抽到號或號卡片的結果有兩種。甲、乙兩人同時得到獎品的概率為【點睛】本題考查畫樹狀圖求概率,正確理解題意取后不放回并正確畫出樹狀圖是本題的解題關鍵.21、(1);(2)當時,最大值為;(3)存在,點坐標為,理由見解析【分析】(1)利用待定系數法可求出二次函數的解析式;(2)求三角形面積的最值,先求出三角形面積的函數式.從圖形上看S△PAB=S△BPO+S△APO-S△AOB,設P求出關于n的函數式,從而求S△PAB的最大值.(3)求點D的坐標,設D,過D做DG垂直于AC于G,構造直角三角形,利用勾股定理或三角函數值來求t的值即得D的坐標;探究在y軸上是否存在點,使?根據以上條件和結論可知∠CAD=120°,是∠CQD的2倍,聯(lián)想到同弧所對的圓周角和圓心角,所以以A為圓心,AO長為半徑做圓交y軸與點Q,若能求出這樣的點,就存在Q點.【詳解】解:拋物線頂點為可設拋物線解析式為將代入得拋物線,即連接,設點坐標為當時,最大值為存在,設點D的坐標為過作對稱軸的垂線,垂足為,則在中有化簡得(舍去),∴點D(,-3)連接,在中在以為圓心,為半徑的圓與軸的交點上此時設點為(0,m),AQ為的半徑則AQ2=OQ2+OA2,62=m2+32即∴綜上所述,點坐標為故存在點Q,且這樣的點有兩個點.【點睛】(1)本題考查了利用待定系數法求二次函數解析式,根據已知條件選用頂點式較方便;(2)本題是三角形面積的最值問題,解決這個問題應該在分析圖形的基礎上,引出自變量,再根據圖形的特征列出面積的計算公式,用含自變量的代數式表示面積的函數式,然后求出最值.(3)先求拋物線上點的坐標問題及符合條件的點是否存在.一般先假設這個點存在,再根據已知條件求出這個點.22、(1);;(2)成立,理由見解析【分析】(1)①依據等腰三角形的性質得到AB=AC,AD=AE,依據同角的余角相等得到∠DAB=∠CAE,然后依據“SAS”可證明△ADB≌△AEC,最后,依據全等三角形的性質可得到∠ABD=∠ACE;②由三角形內角和定理可求∠BPC的度數;(2)由30°角的性質可知,,從而可得,進而可證,由相似三角形的性質和三角形內角和即可得出結論;【詳解】(1)①∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,∠ABC=∠ACB=45°,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,②∵∠BPC=180°-∠ABD-∠ABC-∠BCP=180°-45°-(∠BCP+∠ACE),∴∠BPC=90°,故答案為:;(2)(1)中結論成立,理由:在中,,∴.在中,,∴,∴,∵,∴,∴.∴;∵∴.【點睛】本題是三角形綜合題,主要考查的是旋轉的性質、等腰三角形的性質、全等三角形的性質和判定、含30°角的直角三角形的性質,以及相似三角形的性質和判定,證明得是解題的關鍵.23、(1)證明見解析;(2);(3).【分析】(1)利用D是BC邊上的中點,DE⊥BC可以得到∠EBC=∠ECB,而由AD=AC可以得到∠ADC=∠ACD,再利用相似三角形的判定定理,就可以證明題目結論;(2)根據相似三角形的性質和等腰三角形的性質定理,解答即可;(3)利用相似三角形的性質就可以求出三角形ABC的面積,然后利用面積公式求出AM的值,結合,即可求解.【詳解】(1)∵D是BC邊上的中點,DE⊥BC,∴BD=DC,∠EDB=∠EDC=90°,∵DE=DE,∴△BDE≌△EDC(S
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度大數據中心運營維護合同
- 2024年建筑工程設計與咨詢合同
- 2024年度航空公司機票代理合同
- 2024年度環(huán)保工程與技術咨詢合同
- 幼兒食品課件教學課件
- 美術課件價格教學課件
- 尿道異物課件教學課件
- 2024年塑料纖維生產加工許可合同
- 2024年建筑人才中介服務協(xié)議
- 2024年度南京市存量房購買合同
- 山西省太原市2024-2025學年高三上學期期中物理試卷(含答案)
- 酒店崗位招聘面試題與參考回答2025年
- (統(tǒng)編2024版)道德與法治七上10.1愛護身體 課件
- GB/T 30391-2024花椒
- 快速反應流程
- 外貿_詢盤的分析與回復(精)
- 數獨骨灰級100題
- 基于HTML5技術的動漫宣傳介紹網站的設計與實現(xiàn)
- 江蘇省電力公司配電網管理規(guī)范實施細則
- 中山紀念堂英文導游詞
- TGNET培訓講義
評論
0/150
提交評論