2023屆北京市順義區(qū)第一中學高三數(shù)學第一學期期末調(diào)研模擬試題含解析_第1頁
2023屆北京市順義區(qū)第一中學高三數(shù)學第一學期期末調(diào)研模擬試題含解析_第2頁
2023屆北京市順義區(qū)第一中學高三數(shù)學第一學期期末調(diào)研模擬試題含解析_第3頁
2023屆北京市順義區(qū)第一中學高三數(shù)學第一學期期末調(diào)研模擬試題含解析_第4頁
2023屆北京市順義區(qū)第一中學高三數(shù)學第一學期期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.2.設全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}3.已知定義在上的偶函數(shù),當時,,設,則()A. B. C. D.4.已知,,若,則實數(shù)的值是()A.-1 B.7 C.1 D.1或75.如圖,設為內(nèi)一點,且,則與的面積之比為A. B.C. D.6.港珠澳大橋于2018年10月2刻日正式通車,它是中國境內(nèi)一座連接香港、珠海和澳門的橋隧工程,橋隧全長55千米.橋面為雙向六車道高速公路,大橋通行限速100km/h,現(xiàn)對大橋某路段上1000輛汽車的行駛速度進行抽樣調(diào)查.畫出頻率分布直方圖(如圖),根據(jù)直方圖估計在此路段上汽車行駛速度在區(qū)間[85,90)的車輛數(shù)和行駛速度超過90km/h的頻率分別為()A.300, B.300, C.60, D.60,7.德國數(shù)學家萊布尼茲(1646年-1716年)于1674年得到了第一個關于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學家?天文學家明安圖(1692年-1765年)為提高我國的數(shù)學研究水平,從乾隆初年(1736年)開始,歷時近30年,證明了包括這個公式在內(nèi)的三個公式,同時求得了展開三角函數(shù)和反三角函數(shù)的6個新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關于π的級數(shù)展開式”計算π的近似值(其中P表示π的近似值),若輸入,則輸出的結果是()A. B.C. D.8.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.9.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B10.若復數(shù)滿足,則的虛部為()A.5 B. C. D.-511.函數(shù)的部分圖像如圖所示,若,點的坐標為,若將函數(shù)向右平移個單位后函數(shù)圖像關于軸對稱,則的最小值為()A. B. C. D.12.甲、乙兩名學生的六次數(shù)學測驗成績(百分制)的莖葉圖如圖所示.①甲同學成績的中位數(shù)大于乙同學成績的中位數(shù);②甲同學的平均分比乙同學的平均分高;③甲同學的平均分比乙同學的平均分低;④甲同學成績的方差小于乙同學成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,項的系數(shù)是__________(用數(shù)字作答).14.己知函數(shù),若關于的不等式對任意的恒成立,則實數(shù)的取值范圍是______.15.已知函數(shù),曲線與直線相交,若存在相鄰兩個交點間的距離為,則可取到的最大值為__________.16.若函數(shù)為偶函數(shù),則.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點.(1)證明:;(2)求直線與平面所成角的正弦值.18.(12分)如圖,在三棱錐中,平面平面,,.點,,分別為線段,,的中點,點是線段的中點.(1)求證:平面.(2)判斷與平面的位置關系,并證明.19.(12分)已知分別是的內(nèi)角的對邊,且.(Ⅰ)求.(Ⅱ)若,,求的面積.(Ⅲ)在(Ⅱ)的條件下,求的值.20.(12分)為了解網(wǎng)絡外賣的發(fā)展情況,某調(diào)查機構從全國各城市中抽取了100個相同等級地城市,分別調(diào)查了甲乙兩家網(wǎng)絡外賣平臺(以下簡稱外賣甲、外賣乙)在今年3月的訂單情況,得到外賣甲該月訂單的頻率分布直方圖,外賣乙該月訂單的頻數(shù)分布表,如下圖表所示.訂單:(單位:萬件)頻數(shù)1223訂單:(單位:萬件)頻數(shù)402020102(1)現(xiàn)規(guī)定,月訂單不低于13萬件的城市為“業(yè)績突出城市”,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡外賣平臺”有關.業(yè)績突出城市業(yè)績不突出城市總計外賣甲外賣乙總計(2)由頻率分布直方圖可以認為,外賣甲今年3月在全國各城市的訂單數(shù)(單位:萬件)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),的值已求出,約為3.64,現(xiàn)把頻率視為概率,解決下列問題:①從全國各城市中隨機抽取6個城市,記為外賣甲在今年3月訂單數(shù)位于區(qū)間的城市個數(shù),求的數(shù)學期望;②外賣甲決定在今年3月訂單數(shù)低于7萬件的城市開展“訂外賣,搶紅包”的營銷活動來提升業(yè)績,據(jù)統(tǒng)計,開展此活動后城市每月外賣訂單數(shù)將提高到平均每月9萬件的水平,現(xiàn)從全國各月訂單數(shù)不超過7萬件的城市中采用分層抽樣的方法選出100個城市不開展營銷活動,若每按一件外賣訂單平均可獲純利潤5元,但每件外賣平均需送出紅包2元,則外賣甲在這100個城市中開展營銷活動將比不開展營銷活動每月多盈利多少萬元?附:①參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,則,.21.(12分)已知函數(shù)(,),且對任意,都有.(Ⅰ)用含的表達式表示;(Ⅱ)若存在兩個極值點,,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數(shù),并說明理由.22.(10分)在平面直角坐標系中,曲線的參數(shù)方程是(為參數(shù)),以原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標方程;(Ⅱ)已知直線與曲線交于,兩點,與軸交于點,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先求出,由正弦定理求得,然后由面積公式計算.【詳解】由題意,.由得,.故選:A.【點睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關系,兩角和的正弦公式與誘導公式,解題時要根據(jù)已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.2、C【解析】

解一元二次不等式求得集合,由此求得【詳解】由,解得或.因為或,所以.故選:C【點睛】本小題主要考查一元二次不等式的解法,考查集合補集的概念和運算,屬于基礎題.3、B【解析】

根據(jù)偶函數(shù)性質(zhì),可判斷關系;由時,,求得導函數(shù),并構造函數(shù),由進而判斷函數(shù)在時的單調(diào)性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當時,,則,令則,當時,,則在時單調(diào)遞增,因為,所以,即,則在時單調(diào)遞增,而,所以,綜上可知,即,故選:B.【點睛】本題考查了偶函數(shù)的性質(zhì)應用,由導函數(shù)性質(zhì)判斷函數(shù)單調(diào)性的應用,根據(jù)單調(diào)性比較大小,屬于中檔題.4、C【解析】

根據(jù)平面向量數(shù)量積的坐標運算,化簡即可求得的值.【詳解】由平面向量數(shù)量積的坐標運算,代入化簡可得.∴解得.故選:C.【點睛】本題考查了平面向量數(shù)量積的坐標運算,屬于基礎題.5、A【解析】

作交于點,根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結果.【詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點睛】本題考查三角函數(shù)與向量的結合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.6、B【解析】

由頻率分布直方圖求出在此路段上汽車行駛速度在區(qū)間的頻率即可得到車輛數(shù),同時利用頻率分布直方圖能求行駛速度超過的頻率.【詳解】由頻率分布直方圖得:在此路段上汽車行駛速度在區(qū)間的頻率為,∴在此路段上汽車行駛速度在區(qū)間的車輛數(shù)為:,行駛速度超過的頻率為:.故選:B.【點睛】本題考查頻數(shù)、頻率的求法,考查頻率分布直方圖的性質(zhì)等基礎知識,考查運算求解能力,是基礎題.7、B【解析】

執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時滿足判定條件,輸出結果,故選:B.【點睛】本題主要考查了循環(huán)結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,得到程序框圖的計算功能是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.8、C【解析】

作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.9、C【解析】試題分析:集合考點:集合間的關系10、C【解析】

把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,是基礎題.11、B【解析】

根據(jù)圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數(shù)圖象關于軸對稱,求得的最小值.【詳解】由于,函數(shù)最高點與最低點的高度差為,所以函數(shù)的半個周期,所以,又,,則有,可得,所以,將函數(shù)向右平移個單位后函數(shù)圖像關于軸對稱,即平移后為偶函數(shù),所以的最小值為1,故選:B.【點睛】該題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決該題的關鍵,要求熟練掌握函數(shù)圖象之間的變換關系,屬于簡單題目.12、A【解析】

由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學成績的中位數(shù)為,乙同學成績的中位數(shù)為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】的展開式的通項為:.令,得.答案為:-40.點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據(jù)條件寫出第r+1項,再由特定項的特點求出r值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第r+1項,由特定項得出r值,最后求出其參數(shù).14、【解析】

首先判斷出函數(shù)為定義在上的奇函數(shù),且在定義域上單調(diào)遞增,由此不等式對任意的恒成立,可轉化為在上恒成立,進而建立不等式組,解出即可得到答案.【詳解】解:函數(shù)的定義域為,且,函數(shù)為奇函數(shù),當時,函數(shù),顯然此時函數(shù)為增函數(shù),函數(shù)為定義在上的增函數(shù),不等式即為,在上恒成立,,解得.故答案為.【點睛】本題考查函數(shù)單調(diào)性及奇偶性的綜合運用,考查不等式的恒成立問題,屬于常規(guī)題目.15、4【解析】

由于曲線與直線相交,存在相鄰兩個交點間的距離為,所以函數(shù)的周期,可得到的取值范圍,再由解出的兩類不同的值,然后列方程求出,再結合的取值范圍可得的最大值.【詳解】,可得,由,則或,即或,由題意得,所以,則或,所以可取到的最大值為4.故答案為:4【點睛】此題考查正弦函數(shù)的圖像和性質(zhì)的應用及三角方程的求解,熟練應用三角函數(shù)的圖像和性質(zhì)是解題的關鍵,考查了推理能力和計算能力,屬于中檔題.16、1【解析】試題分析:由函數(shù)為偶函數(shù)函數(shù)為奇函數(shù),.考點:函數(shù)的奇偶性.【方法點晴】本題考查導函數(shù)的奇偶性以及邏輯思維能力、等價轉化能力、運算求解能力、特殊與一般思想、數(shù)形結合思想與轉化思想,具有一定的綜合性和靈活性,屬于較難題型.首先利用轉化思想,將函數(shù)為偶函數(shù)轉化為函數(shù)為奇函數(shù),然后再利用特殊與一般思想,取.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】

(1)設是的中點,連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標原點,的方向為軸的正方向,建空間直角坐標系,分別計算各個點坐標,計算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設是的中點,連接、,是的中點,,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過點作,垂足為,平面,以為坐標原點,的方向為軸的正方向,建立如圖的空間直角坐標系,則,,,,設是平面的一個法向量,則,,令,則,,,直線與平面所成角的正弦值為.【點睛】本題考查了線面垂直,線線垂直,利用空間直角坐標系解決線面夾角問題,意在考查學生的空間想象能力和計算能力.18、(1)見解析(2)平面.見解析【解析】

(1)要證平面,只需證明,,即可求得答案;(2)連接交于點,連接,根據(jù)已知條件求證,即可判斷與平面的位置關系,進而求得答案.【詳解】(1),為邊的中點,,平面平面,平面平面,平面,平面,,在內(nèi),,為所在邊的中點,,又,,平面.(2)判斷可知,平面,證明如下:連接交于點,連接.、、分別為邊、、的中點,.又是的重心,,,平面,平面,平面.【點睛】本題主要考查了求證線面垂直和線面平行,解題關鍵是掌握線面垂直判定定理和線面平行判斷定理,考查了分析能力和空間想象能力,屬于中檔題.19、(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)由已知結合正弦定理先進行代換,然后結合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后結合三角形的面積公式可求;(Ⅲ)結合二倍角公式及和角余弦公式即可求解.【詳解】(Ⅰ)因為,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因為,所以;(Ⅲ)由于,.所以.【點睛】本題主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面積公式的綜合應用,意在考查學生對這些知識的理解掌握水平.20、(1)見解析,有90%的把握認為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡外賣平臺”有關.(2)①4.911②100萬元.【解析】

(1)根據(jù)頻率分布直方圖與頻率分布表,易得兩個外賣平臺中月訂單不低于13萬件的城市數(shù)量,即可完善列聯(lián)表.通過計算的觀測值,即可結合臨界值作出判斷.(2)①先根據(jù)所給數(shù)據(jù)求得樣本平均值,根據(jù)所給今年3月訂單數(shù)區(qū)間,并由及求得,.結合正態(tài)分布曲線性質(zhì)可求得,再由二項分布的數(shù)學期望求法求解.②訂單數(shù)低于7萬件的城市有和兩組,根據(jù)分層抽樣的性質(zhì)可確定各組抽取樣本數(shù).分別計算出開展營銷活動與不開展營銷活動的利潤,比較即可得解.【詳解】(1)對于外賣甲:月訂單不低于13萬件的城市數(shù)量為,對于外賣乙:月訂單不低于13萬件的城市數(shù)量為.由以上數(shù)據(jù)完善列聯(lián)表如下圖,業(yè)績突出城市業(yè)績不突出城市總計外賣甲4060100外賣乙5248100總計92108200且的觀測值為,∴有90%的把握認為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡外賣平臺”有關.(2)①樣本平均數(shù),故==,,的數(shù)學期望,②由分層抽樣知,則100個城市中每月訂單數(shù)在區(qū)間內(nèi)的有(個),每月訂單數(shù)在區(qū)間內(nèi)的有(個),若不開展營銷活動,則一個月的利潤為(萬元),若開展營銷活動,則一個月的利潤為(萬元),這100個城市中開展營銷活動比不開展每月多盈利100萬元.【點睛】本題考查了頻率分布直方圖與頻率分布表的應用,完善列聯(lián)表并計算的觀測值作出判斷,分層抽樣的簡單應用,綜合性強,屬于中檔題.21、(1)(2)見解析(3)見解析【解析】試題分析:利用賦值法求出關系,求函數(shù)導數(shù),要求函數(shù)有兩個極值點,只需在內(nèi)有兩個實根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點的個數(shù).試題解析:(Ⅰ)根據(jù)題意:令,可得,所以,經(jīng)驗證,可得當時,對任意,都有,所以.(Ⅱ)由(Ⅰ)可知,且,所以,令,要使存在兩個極值點,,則須有有兩個不相等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論