![勾股定理的計(jì)算與作圖優(yōu)秀課件_第1頁(yè)](http://file4.renrendoc.com/view/bf310a9ef8caeed1e8c6c5b34992834f/bf310a9ef8caeed1e8c6c5b34992834f1.gif)
![勾股定理的計(jì)算與作圖優(yōu)秀課件_第2頁(yè)](http://file4.renrendoc.com/view/bf310a9ef8caeed1e8c6c5b34992834f/bf310a9ef8caeed1e8c6c5b34992834f2.gif)
![勾股定理的計(jì)算與作圖優(yōu)秀課件_第3頁(yè)](http://file4.renrendoc.com/view/bf310a9ef8caeed1e8c6c5b34992834f/bf310a9ef8caeed1e8c6c5b34992834f3.gif)
![勾股定理的計(jì)算與作圖優(yōu)秀課件_第4頁(yè)](http://file4.renrendoc.com/view/bf310a9ef8caeed1e8c6c5b34992834f/bf310a9ef8caeed1e8c6c5b34992834f4.gif)
![勾股定理的計(jì)算與作圖優(yōu)秀課件_第5頁(yè)](http://file4.renrendoc.com/view/bf310a9ef8caeed1e8c6c5b34992834f/bf310a9ef8caeed1e8c6c5b34992834f5.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
17.1勾股定理第3課時(shí)第十七章勾股定理17.1勾股定理第3課時(shí)第十七章勾股定理1
一、解決問(wèn)題已知:如圖,在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,AB=A'B',AC=A'C'.求證:△ABC≌△A'B'C'.問(wèn)題1:在八年級(jí)上冊(cè)中,我們?cè)?jīng)通過(guò)畫(huà)圖得到結(jié)論:斜邊和一條直角邊分別相等的兩個(gè)直角三角形全等.學(xué)習(xí)了勾股定理后,你能證明這一結(jié)論嗎?證明:在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,根據(jù)勾股定理,得BC=,.又∵AB=A'B',AC=A'C',∴BC=B'C'
.∴△ABC≌△A'B'C'(SSS).利用勾股定理證明:斜邊和一直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
一、解決問(wèn)題已知:如圖,在Rt△ABC和Rt△A'B'C'一、解決問(wèn)題利用勾股定理畫(huà)出一條線段等于已知長(zhǎng)度為無(wú)理數(shù)的線段
問(wèn)題2:我們知道數(shù)軸上的點(diǎn)有的表示有理數(shù),有的表示無(wú)理數(shù),你能在數(shù)軸上畫(huà)出表示
的點(diǎn)嗎?解:以直角邊長(zhǎng)為2、3的直角三角形的斜邊長(zhǎng)為,由此在數(shù)軸上找出表示3的點(diǎn)A,過(guò)A點(diǎn)作直線垂直于OA,并在垂線上截取AB=2,以原點(diǎn)O為圓心,OB為半徑作弧,弧與數(shù)軸交在原點(diǎn)右側(cè)點(diǎn)C處,點(diǎn)C即為表示的點(diǎn).如下圖所示:一、解決問(wèn)題利用勾股定理畫(huà)出一條線段等于已知長(zhǎng)度為無(wú)理數(shù)的一、解決問(wèn)題注:此圖片是動(dòng)畫(huà)縮略圖,以動(dòng)畫(huà)形式對(duì)作圖過(guò)程進(jìn)行演示.如需使用此資源,請(qǐng)插入動(dòng)畫(huà)“【情景演示】勾股定理的應(yīng)用-在數(shù)軸上畫(huà)出表示根號(hào)13的點(diǎn)”.一、解決問(wèn)題注:此圖片是動(dòng)畫(huà)縮略圖,以動(dòng)畫(huà)形式對(duì)作圖過(guò)程進(jìn)二、拓展應(yīng)用(1)類似地,利用勾股定理,可以作出長(zhǎng)為,
,
,…的點(diǎn),如下圖:二、拓展應(yīng)用(1)類似地,利用勾股定理,可以作出長(zhǎng)為二、拓展應(yīng)用注:此圖片是動(dòng)畫(huà)縮略圖,以動(dòng)畫(huà)形式對(duì)作圖過(guò)程進(jìn)行演示.如需使用此資源,請(qǐng)插入動(dòng)畫(huà)“【數(shù)學(xué)活動(dòng)】勾股定理的應(yīng)用-在數(shù)軸上畫(huà)出表示根號(hào)n(n是正整數(shù))的點(diǎn)”.二、拓展應(yīng)用注:此圖片是動(dòng)畫(huà)縮略圖,以動(dòng)畫(huà)形式對(duì)作圖過(guò)程進(jìn)二、拓展應(yīng)用(2)我們也可以用下圖中的方式構(gòu)造長(zhǎng)為,,,…的線段,如下圖:二、拓展應(yīng)用(2)我們也可以用下圖中的方式構(gòu)造長(zhǎng)為,二、拓展應(yīng)用注:此圖片是動(dòng)畫(huà)縮略圖,以動(dòng)畫(huà)形式對(duì)作圖過(guò)程進(jìn)行演示.如需使用此資源,請(qǐng)插入動(dòng)畫(huà)“【數(shù)學(xué)活動(dòng)】勾股定理的應(yīng)用-數(shù)學(xué)海螺”.二、拓展應(yīng)用注:此圖片是動(dòng)畫(huà)縮略圖,以動(dòng)畫(huà)形式對(duì)作圖過(guò)程進(jìn)
練習(xí)1在數(shù)軸上畫(huà)出表示的點(diǎn).【點(diǎn)撥】作一條長(zhǎng)度等于無(wú)理數(shù)的線段的方法不唯一,如,除了上題中構(gòu)造直角邊為1,2的直角三角形,也可以借助直角邊為
,的直角三角形得到,我們一般盡量利用直角邊為整數(shù)的直角三角形作出.三、鞏固練習(xí)練習(xí)1在數(shù)軸上畫(huà)出表示的點(diǎn).【點(diǎn)撥】作一條長(zhǎng)度等練習(xí)2在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)皆為1.請(qǐng)?jiān)诰W(wǎng)格上畫(huà)出長(zhǎng)度分別為,,的線段.解:如圖所示,圖中AB,CD,EF即為所求,AB==,CD==,EF==.三、鞏固練習(xí)練習(xí)2在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)皆為1四、綜合運(yùn)用問(wèn)題3:如圖,折疊長(zhǎng)方形的一邊AD,使點(diǎn)D落在BC邊上的點(diǎn)F處,已知AB=8
cm,BC=10
cm,求EC的長(zhǎng).解:∵四邊形ABCD是長(zhǎng)方形,∴AD=BC=10cm,∠B=∠C=90°.∵△ADE與△AFE關(guān)于AE對(duì)稱,∴AF=AD=10cm,DE=FE.在Rt△ABF中,由勾股定理得,BF==6cm,∴FC=BC-BF=4cm.設(shè)CE=xcm,則EF=ED=CD-CE=(8-x)cm,在Rt△ECF中,由勾股定理得EC2+FC2=EF2∴x2+42=(8-x)2解得,x=3.即EC的長(zhǎng)為3cm.利用勾股定理解決較復(fù)雜的幾何問(wèn)題四、綜合運(yùn)用問(wèn)題3:如圖,折疊長(zhǎng)方形的一邊AD,使點(diǎn)D落在B練習(xí)3如圖,將矩形ABCD沿直線AE折疊,頂點(diǎn)D恰好落在BC邊上F點(diǎn)處,已知CE=3
cm,AB=8
cm,求圖中陰影部分的面積.解:由折疊可知△ADE和△AFE關(guān)于AE成軸對(duì)稱,故AF=AD,EF=DE=DC-CE=8-3=5.所以CF=4,設(shè)BF=xcm,則AF=AD=BC=x+4.在Rt△ABF中,由勾股定理,得82+x2=(x+4)2.解得x=6,故BC=10.所以陰影部分的面積為:10×8-2S△ADE=80-50=30(cm2).四、綜合運(yùn)用練習(xí)3如圖,將矩形ABCD沿直線AE折疊,頂點(diǎn)D恰好落在四、綜合運(yùn)用問(wèn)題4:(1)如圖,平面上兩點(diǎn)A(1,2),B(5,5),如何計(jì)算這兩點(diǎn)之間的距離?四、綜合運(yùn)用問(wèn)題4:四、綜合運(yùn)用問(wèn)題4:(2)一般地,設(shè)平面上任意兩點(diǎn)A(x1,y1)和B(x2,y2),如圖,如何計(jì)算A,B兩點(diǎn)之間的距離?四、綜合運(yùn)用問(wèn)題4:四、綜合運(yùn)用注:此圖片是動(dòng)畫(huà)縮略圖,探究勾股定理在平面直角坐標(biāo)系中的運(yùn)用.如需使用此資源,請(qǐng)插入動(dòng)畫(huà)“【知識(shí)探究】勾股定理的應(yīng)用-兩點(diǎn)之間的距離公式”.四、綜合運(yùn)用注:此圖片是動(dòng)畫(huà)縮略圖,探究勾股定理在平面直角坐1.在數(shù)軸上表示無(wú)理數(shù)c的關(guān)鍵是:
利用勾股定理聯(lián)想到
,即以a,b為直角邊長(zhǎng)構(gòu)造直角三角形,則斜邊長(zhǎng)為c.以原點(diǎn)為圓心,以斜邊長(zhǎng)為半徑作弧即可在數(shù)軸上表示無(wú)理數(shù).2.在解決有關(guān)直角三角形的問(wèn)題是:
常常利用勾股定理由已知線段求未知線段,或利用勾股定理列出方程解決問(wèn)題.五、課堂小結(jié)1.在數(shù)軸上表示無(wú)理數(shù)c的關(guān)鍵是:五、課堂小結(jié)再見(jiàn)再見(jiàn)1717.1勾股定理第3課時(shí)第十七章勾股定理17.1勾股定理第3課時(shí)第十七章勾股定理18
一、解決問(wèn)題已知:如圖,在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,AB=A'B',AC=A'C'.求證:△ABC≌△A'B'C'.問(wèn)題1:在八年級(jí)上冊(cè)中,我們?cè)?jīng)通過(guò)畫(huà)圖得到結(jié)論:斜邊和一條直角邊分別相等的兩個(gè)直角三角形全等.學(xué)習(xí)了勾股定理后,你能證明這一結(jié)論嗎?證明:在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,根據(jù)勾股定理,得BC=,.又∵AB=A'B',AC=A'C',∴BC=B'C'
.∴△ABC≌△A'B'C'(SSS).利用勾股定理證明:斜邊和一直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
一、解決問(wèn)題已知:如圖,在Rt△ABC和Rt△A'B'C'一、解決問(wèn)題利用勾股定理畫(huà)出一條線段等于已知長(zhǎng)度為無(wú)理數(shù)的線段
問(wèn)題2:我們知道數(shù)軸上的點(diǎn)有的表示有理數(shù),有的表示無(wú)理數(shù),你能在數(shù)軸上畫(huà)出表示
的點(diǎn)嗎?解:以直角邊長(zhǎng)為2、3的直角三角形的斜邊長(zhǎng)為,由此在數(shù)軸上找出表示3的點(diǎn)A,過(guò)A點(diǎn)作直線垂直于OA,并在垂線上截取AB=2,以原點(diǎn)O為圓心,OB為半徑作弧,弧與數(shù)軸交在原點(diǎn)右側(cè)點(diǎn)C處,點(diǎn)C即為表示的點(diǎn).如下圖所示:一、解決問(wèn)題利用勾股定理畫(huà)出一條線段等于已知長(zhǎng)度為無(wú)理數(shù)的一、解決問(wèn)題注:此圖片是動(dòng)畫(huà)縮略圖,以動(dòng)畫(huà)形式對(duì)作圖過(guò)程進(jìn)行演示.如需使用此資源,請(qǐng)插入動(dòng)畫(huà)“【情景演示】勾股定理的應(yīng)用-在數(shù)軸上畫(huà)出表示根號(hào)13的點(diǎn)”.一、解決問(wèn)題注:此圖片是動(dòng)畫(huà)縮略圖,以動(dòng)畫(huà)形式對(duì)作圖過(guò)程進(jìn)二、拓展應(yīng)用(1)類似地,利用勾股定理,可以作出長(zhǎng)為,
,
,…的點(diǎn),如下圖:二、拓展應(yīng)用(1)類似地,利用勾股定理,可以作出長(zhǎng)為二、拓展應(yīng)用注:此圖片是動(dòng)畫(huà)縮略圖,以動(dòng)畫(huà)形式對(duì)作圖過(guò)程進(jìn)行演示.如需使用此資源,請(qǐng)插入動(dòng)畫(huà)“【數(shù)學(xué)活動(dòng)】勾股定理的應(yīng)用-在數(shù)軸上畫(huà)出表示根號(hào)n(n是正整數(shù))的點(diǎn)”.二、拓展應(yīng)用注:此圖片是動(dòng)畫(huà)縮略圖,以動(dòng)畫(huà)形式對(duì)作圖過(guò)程進(jìn)二、拓展應(yīng)用(2)我們也可以用下圖中的方式構(gòu)造長(zhǎng)為,,,…的線段,如下圖:二、拓展應(yīng)用(2)我們也可以用下圖中的方式構(gòu)造長(zhǎng)為,二、拓展應(yīng)用注:此圖片是動(dòng)畫(huà)縮略圖,以動(dòng)畫(huà)形式對(duì)作圖過(guò)程進(jìn)行演示.如需使用此資源,請(qǐng)插入動(dòng)畫(huà)“【數(shù)學(xué)活動(dòng)】勾股定理的應(yīng)用-數(shù)學(xué)海螺”.二、拓展應(yīng)用注:此圖片是動(dòng)畫(huà)縮略圖,以動(dòng)畫(huà)形式對(duì)作圖過(guò)程進(jìn)
練習(xí)1在數(shù)軸上畫(huà)出表示的點(diǎn).【點(diǎn)撥】作一條長(zhǎng)度等于無(wú)理數(shù)的線段的方法不唯一,如,除了上題中構(gòu)造直角邊為1,2的直角三角形,也可以借助直角邊為
,的直角三角形得到,我們一般盡量利用直角邊為整數(shù)的直角三角形作出.三、鞏固練習(xí)練習(xí)1在數(shù)軸上畫(huà)出表示的點(diǎn).【點(diǎn)撥】作一條長(zhǎng)度等練習(xí)2在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)皆為1.請(qǐng)?jiān)诰W(wǎng)格上畫(huà)出長(zhǎng)度分別為,,的線段.解:如圖所示,圖中AB,CD,EF即為所求,AB==,CD==,EF==.三、鞏固練習(xí)練習(xí)2在如圖所示的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)皆為1四、綜合運(yùn)用問(wèn)題3:如圖,折疊長(zhǎng)方形的一邊AD,使點(diǎn)D落在BC邊上的點(diǎn)F處,已知AB=8
cm,BC=10
cm,求EC的長(zhǎng).解:∵四邊形ABCD是長(zhǎng)方形,∴AD=BC=10cm,∠B=∠C=90°.∵△ADE與△AFE關(guān)于AE對(duì)稱,∴AF=AD=10cm,DE=FE.在Rt△ABF中,由勾股定理得,BF==6cm,∴FC=BC-BF=4cm.設(shè)CE=xcm,則EF=ED=CD-CE=(8-x)cm,在Rt△ECF中,由勾股定理得EC2+FC2=EF2∴x2+42=(8-x)2解得,x=3.即EC的長(zhǎng)為3cm.利用勾股定理解決較復(fù)雜的幾何問(wèn)題四、綜合運(yùn)用問(wèn)題3:如圖,折疊長(zhǎng)方形的一邊AD,使點(diǎn)D落在B練習(xí)3如圖,將矩形ABCD沿直線AE折疊,頂點(diǎn)D恰好落在BC邊上F點(diǎn)處,已知CE=3
cm,AB=8
cm,求圖中陰影部分的面積.解:由折疊可知△ADE和△AFE關(guān)于AE成軸對(duì)稱,故AF=AD,EF=DE=DC-CE=8-3=5.所以CF=4,設(shè)BF=xcm,則AF=AD=BC=x+4.在Rt△ABF中,由勾股定理,得82+x2=(x+4)2.解得x=6,故BC=10.所以陰影部分的面積為:10×8-2S△ADE=80-50=30(cm2).四、綜合運(yùn)用練習(xí)3如圖,將矩形ABCD沿直線AE折疊,頂點(diǎn)D恰好落在四、綜合運(yùn)用問(wèn)題4:(1)如圖,平面上兩點(diǎn)A(1,2),B(5,5),如何計(jì)算這兩點(diǎn)之間的距離?四、綜合運(yùn)用問(wèn)題4:四、綜合運(yùn)用問(wèn)題4:(2)一般地,設(shè)平面上任意兩點(diǎn)A(x1,y1)和B(x2,y2),如圖,如何計(jì)算A,B兩點(diǎn)之間的距離?四、綜合運(yùn)用問(wèn)題4:四、綜合運(yùn)用注:此圖片是動(dòng)畫(huà)縮略圖,探究勾股定理在平面直角坐標(biāo)系中的運(yùn)用.如需使用此資源,請(qǐng)插入動(dòng)畫(huà)“【知識(shí)探究】勾
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年個(gè)人實(shí)習(xí)工作心得感想模版(2篇)
- 2025年《條例》心得體會(huì)例文(5篇)
- 2025年下半年述職大會(huì)心得體會(huì)(5篇)
- 二零二五年度時(shí)尚發(fā)布會(huì)特邀模特演出合同
- 2025【合同范本】資產(chǎn)劃撥協(xié)議
- 二零二五年度智能家居產(chǎn)業(yè)股東轉(zhuǎn)讓與市場(chǎng)拓展合同
- 2025鉆機(jī)設(shè)備出租合同范文
- 2025營(yíng)銷員勞動(dòng)合同
- 2025競(jìng)業(yè)限制合同
- 建設(shè)工程質(zhì)量安全監(jiān)督人員考試題庫(kù)含答案
- 2024-2025學(xué)年廣東省深圳市南山區(qū)監(jiān)測(cè)數(shù)學(xué)三年級(jí)第一學(xué)期期末學(xué)業(yè)水平測(cè)試試題含解析
- 廣東2024年廣東金融學(xué)院招聘專職輔導(dǎo)員9人筆試歷年典型考點(diǎn)(頻考版試卷)附帶答案詳解
- 江蘇省南京鼓樓區(qū)2024年中考聯(lián)考英語(yǔ)試題含答案
- 兒科護(hù)理學(xué)試題及答案解析-神經(jīng)系統(tǒng)疾病患兒的護(hù)理(二)
- 15篇文章包含英語(yǔ)四級(jí)所有詞匯
- 王陽(yáng)明心學(xué)完整版本
- 四年級(jí)上冊(cè)豎式計(jì)算300題及答案
- 課題研究實(shí)施方案 范例及課題研究方法及技術(shù)路線圖模板
- 牙髓炎中牙髓干細(xì)胞與神經(jīng)支配的相互作用
- 【2022屆高考英語(yǔ)讀后續(xù)寫(xiě)】主題升華積累講義及高級(jí)句型積累
- 西方法律思想史ppt
評(píng)論
0/150
提交評(píng)論