2021-2022學(xué)年內(nèi)蒙古呼和浩特市開來(lái)中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第1頁(yè)
2021-2022學(xué)年內(nèi)蒙古呼和浩特市開來(lái)中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第2頁(yè)
2021-2022學(xué)年內(nèi)蒙古呼和浩特市開來(lái)中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第3頁(yè)
2021-2022學(xué)年內(nèi)蒙古呼和浩特市開來(lái)中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第4頁(yè)
2021-2022學(xué)年內(nèi)蒙古呼和浩特市開來(lái)中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)滿足,且,則的最小值是()A. B. C. D.2.過(guò)拋物線()的焦點(diǎn)且傾斜角為的直線交拋物線于兩點(diǎn).,且在第一象限,則()A. B. C. D.3.已知,若方程有唯一解,則實(shí)數(shù)的取值范圍是()A. B.C. D.4.已知變量的幾組取值如下表:12347若與線性相關(guān),且,則實(shí)數(shù)()A. B. C. D.5.已知函數(shù),方程有四個(gè)不同的根,記最大的根的所有取值為集合,則“函數(shù)有兩個(gè)零點(diǎn)”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.《易·系辭上》有“河出圖,洛出書”之說(shuō),河圖、洛書是中華文化,陰陽(yáng)術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽(yáng)數(shù),黑點(diǎn)為陰數(shù).若從這10個(gè)數(shù)中任取3個(gè)數(shù),則這3個(gè)數(shù)中至少有2個(gè)陽(yáng)數(shù)且能構(gòu)成等差數(shù)列的概率為()A. B. C. D.7.若函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.8.已知函數(shù),若,則的取值范圍是()A. B. C. D.9.下列結(jié)論中正確的個(gè)數(shù)是()①已知函數(shù)是一次函數(shù),若數(shù)列通項(xiàng)公式為,則該數(shù)列是等差數(shù)列;②若直線上有兩個(gè)不同的點(diǎn)到平面的距離相等,則;③在中,“”是“”的必要不充分條件;④若,則的最大值為2.A.1 B.2 C.3 D.010.已知復(fù)數(shù)z滿足i?z=2+i,則z的共軛復(fù)數(shù)是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i11.已知整數(shù)滿足,記點(diǎn)的坐標(biāo)為,則點(diǎn)滿足的概率為()A. B. C. D.12.下列四個(gè)圖象可能是函數(shù)圖象的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.有編號(hào)分別為1,2,3,4,5的5個(gè)紅球和5個(gè)黑球,從中隨機(jī)取出4個(gè),則取出球的編號(hào)互不相同的概率為_______________.14.如圖所示,在△ABC中,AB=AC=2,,,AE的延長(zhǎng)線交BC邊于點(diǎn)F,若,則____.15.四面體中,底面,,,則四面體的外接球的表面積為______16.已知集合,.若,則實(shí)數(shù)a的值是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某調(diào)查機(jī)構(gòu)對(duì)某校學(xué)生做了一個(gè)是否同意生“二孩”抽樣調(diào)查,該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生,調(diào)查統(tǒng)計(jì)他們是同意父母生“二孩”還是反對(duì)父母生“二孩”,現(xiàn)已得知100人中同意父母生“二孩”占60%,統(tǒng)計(jì)情況如下表:同意不同意合計(jì)男生a5女生40d合計(jì)100(1)求a,d的值,根據(jù)以上數(shù)據(jù),能否有97.5%的把握認(rèn)為是否同意父母生“二孩”與性別有關(guān)?請(qǐng)說(shuō)明理由;(2)將上述調(diào)查所得的頻率視為概率,現(xiàn)在從所有學(xué)生中,采用隨機(jī)抽樣的方法抽取4位學(xué)生進(jìn)行長(zhǎng)期跟蹤調(diào)查,記被抽取的4位學(xué)生中持“同意”態(tài)度的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63518.(12分)如圖,過(guò)點(diǎn)且平行與x軸的直線交橢圓于A、B兩點(diǎn),且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)M且斜率為正的直線交橢圓于段C、D,直線AC、BD分別交直線于點(diǎn)E、F,求證:是定值.19.(12分)已知等比數(shù)列,其公比,且滿足,和的等差中項(xiàng)是1.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若,是數(shù)列的前項(xiàng)和,求使成立的正整數(shù)的值.20.(12分)某地在每周六的晚上8點(diǎn)到10點(diǎn)半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時(shí)刻亮燈的概率均為,并且是否亮燈彼此相互獨(dú)立.現(xiàn)統(tǒng)計(jì)了其中100盞燈在一場(chǎng)燈光展中亮燈的時(shí)長(zhǎng)(單位:),得到下面的頻數(shù)表:亮燈時(shí)長(zhǎng)/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時(shí)長(zhǎng)作為一盞燈的亮燈時(shí)長(zhǎng).(1)試估計(jì)的值;(2)設(shè)表示這10000盞燈在某一時(shí)刻亮燈的數(shù)目.①求的數(shù)學(xué)期望和方差;②若隨機(jī)變量滿足,則認(rèn)為.假設(shè)當(dāng)時(shí),燈光展處于最佳燈光亮度.試由此估計(jì),在一場(chǎng)燈光展中,處于最佳燈光亮度的時(shí)長(zhǎng)(結(jié)果保留為整數(shù)).附:①某盞燈在某一時(shí)刻亮燈的概率等于亮燈時(shí)長(zhǎng)與燈光展總時(shí)長(zhǎng)的商;②若,則,,.21.(12分)某公司打算引進(jìn)一臺(tái)設(shè)備使用一年,現(xiàn)有甲、乙兩種設(shè)備可供選擇.甲設(shè)備每臺(tái)10000元,乙設(shè)備每臺(tái)9000元.此外設(shè)備使用期間還需維修,對(duì)于每臺(tái)設(shè)備,一年間三次及三次以內(nèi)免費(fèi)維修,三次以外的維修費(fèi)用均為每次1000元.該公司統(tǒng)計(jì)了曾使用過(guò)的甲、乙各50臺(tái)設(shè)備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設(shè)備分別在50臺(tái)中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.維修次數(shù)23456甲設(shè)備5103050乙設(shè)備05151515(1)設(shè)甲、乙兩種設(shè)備每臺(tái)購(gòu)買和一年間維修的花費(fèi)總額分別為和,求和的分布列;(2)若以數(shù)學(xué)期望為決策依據(jù),希望設(shè)備購(gòu)買和一年間維修的花費(fèi)總額盡量低,且維修次數(shù)盡量少,則需要購(gòu)買哪種設(shè)備?請(qǐng)說(shuō)明理由.22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在區(qū)間上的最小值為,求m的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

由推導(dǎo)出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調(diào)性可得出其最小值.【詳解】函數(shù)滿足,,即,,,,即,,則,由基本不等式得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當(dāng)時(shí),取得最小值.故選:A.【點(diǎn)睛】本題考查代數(shù)式最值的計(jì)算,涉及對(duì)數(shù)運(yùn)算性質(zhì)、基本不等式以及函數(shù)單調(diào)性的應(yīng)用,考查計(jì)算能力,屬于中等題.2.C【解析】

作,;,由題意,由二倍角公式即得解.【詳解】由題意,,準(zhǔn)線:,作,;,設(shè),故,,.故選:C【點(diǎn)睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3.B【解析】

求出的表達(dá)式,畫出函數(shù)圖象,結(jié)合圖象以及二次方程實(shí)根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數(shù)恒過(guò),,由,,可得,,,若方程有唯一解,則或,即或;當(dāng)即圖象相切時(shí),根據(jù),,解得舍去),則的范圍是,故選:.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)問(wèn)題,考查函數(shù)方程的轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.4.B【解析】

求出,把坐標(biāo)代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.【點(diǎn)睛】本題考查線性回歸直線方程,由性質(zhì)線性回歸直線一定過(guò)中心點(diǎn)可計(jì)算參數(shù)值.5.A【解析】

作出函數(shù)的圖象,得到,把函數(shù)有零點(diǎn)轉(zhuǎn)化為與在(2,4]上有交點(diǎn),利用導(dǎo)數(shù)求出切線斜率,即可求得的取值范圍,再根據(jù)充分、必要條件的定義即可判斷.【詳解】作出函數(shù)的圖象如圖,由圖可知,,函數(shù)有2個(gè)零點(diǎn),即有兩個(gè)不同的根,也就是與在上有2個(gè)交點(diǎn),則的最小值為;設(shè)過(guò)原點(diǎn)的直線與的切點(diǎn)為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數(shù)有兩個(gè)零點(diǎn)”是“”的充分不必要條件,故選A.【點(diǎn)睛】本題主要考查了函數(shù)零點(diǎn)的判定,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,訓(xùn)練了利用導(dǎo)數(shù)研究過(guò)曲線上某點(diǎn)處的切線方程,試題有一定的綜合性,屬于中檔題.6.C【解析】

先根據(jù)組合數(shù)計(jì)算出所有的情況數(shù),再根據(jù)“3個(gè)數(shù)中至少有2個(gè)陽(yáng)數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對(duì)應(yīng)的概率.【詳解】所有的情況數(shù)有:種,3個(gè)數(shù)中至少有2個(gè)陽(yáng)數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標(biāo)事件的概率.故選:C.【點(diǎn)睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識(shí),難度一般.求解該類問(wèn)題可通過(guò)古典概型的概率求解方法進(jìn)行分析;當(dāng)情況數(shù)較多時(shí),可考慮用排列數(shù)、組合數(shù)去計(jì)算.7.A【解析】試題分析:由題意得有兩個(gè)不相等的實(shí)數(shù)根,所以必有解,則,且,∴.考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)極值點(diǎn)【方法點(diǎn)睛】函數(shù)極值問(wèn)題的常見類型及解題策略(1)知圖判斷函數(shù)極值的情況.先找導(dǎo)數(shù)為0的點(diǎn),再判斷導(dǎo)數(shù)為0的點(diǎn)的左、右兩側(cè)的導(dǎo)數(shù)符號(hào).(2)已知函數(shù)求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗(yàn)f′(x)在f′(x)=0的根的附近兩側(cè)的符號(hào)―→下結(jié)論.(3)已知極值求參數(shù).若函數(shù)f(x)在點(diǎn)(x0,y0)處取得極值,則f′(x0)=0,且在該點(diǎn)左、右兩側(cè)的導(dǎo)數(shù)值符號(hào)相反.8.B【解析】

對(duì)分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數(shù),由得或解得.故選:B.【點(diǎn)睛】本題考查利用分段函數(shù)性質(zhì)解不等式,屬于基礎(chǔ)題.9.B【解析】

根據(jù)等差數(shù)列的定義,線面關(guān)系,余弦函數(shù)以及基本不等式一一判斷即可;【詳解】解:①已知函數(shù)是一次函數(shù),若數(shù)列的通項(xiàng)公式為,可得為一次項(xiàng)系數(shù)),則該數(shù)列是等差數(shù)列,故①正確;②若直線上有兩個(gè)不同的點(diǎn)到平面的距離相等,則與可以相交或平行,故②錯(cuò)誤;③在中,,而余弦函數(shù)在區(qū)間上單調(diào)遞減,故“”可得“”,由“”可得“”,故“”是“”的充要條件,故③錯(cuò)誤;④若,則,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào),故④正確;綜上可得正確的有①④共2個(gè);故選:B【點(diǎn)睛】本題考查命題的真假判斷,主要是正弦定理的運(yùn)用和等比數(shù)列的求和公式、等差數(shù)列的定義和不等式的性質(zhì),考查運(yùn)算能力和推理能力,屬于中檔題.10.D【解析】

兩邊同乘-i,化簡(jiǎn)即可得出答案.【詳解】i?z=2+i兩邊同乘-i得z=1-2i,共軛復(fù)數(shù)為1+2i,選D.【點(diǎn)睛】的共軛復(fù)數(shù)為11.D【解析】

列出所有圓內(nèi)的整數(shù)點(diǎn)共有37個(gè),滿足條件的有7個(gè),相除得到概率.【詳解】因?yàn)槭钦麛?shù),所以所有滿足條件的點(diǎn)是位于圓(含邊界)內(nèi)的整數(shù)點(diǎn),滿足條件的整數(shù)點(diǎn)有共37個(gè),滿足的整數(shù)點(diǎn)有7個(gè),則所求概率為.故選:.【點(diǎn)睛】本題考查了古典概率的計(jì)算,意在考查學(xué)生的應(yīng)用能力.12.C【解析】

首先求出函數(shù)的定義域,其函數(shù)圖象可由的圖象沿軸向左平移1個(gè)單位而得到,因?yàn)闉槠婧瘮?shù),即可得到函數(shù)圖象關(guān)于對(duì)稱,即可排除A、D,再根據(jù)時(shí)函數(shù)值,排除B,即可得解.【詳解】∵的定義域?yàn)?,其圖象可由的圖象沿軸向左平移1個(gè)單位而得到,∵為奇函數(shù),圖象關(guān)于原點(diǎn)對(duì)稱,∴的圖象關(guān)于點(diǎn)成中心對(duì)稱.可排除A、D項(xiàng).當(dāng)時(shí),,∴B項(xiàng)不正確.故選:C【點(diǎn)睛】本題考查函數(shù)的性質(zhì)與識(shí)圖能力,一般根據(jù)四個(gè)選擇項(xiàng)來(lái)判斷對(duì)應(yīng)的函數(shù)性質(zhì),即可排除三個(gè)不符的選項(xiàng),屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】試題分析:從編號(hào)分別為1,1,3,4,5的5個(gè)紅球和5個(gè)黑球,從中隨機(jī)取出4個(gè),有種不同的結(jié)果,由于是隨機(jī)取出的,所以每個(gè)結(jié)果出現(xiàn)的可能性是相等的;設(shè)事件為“取出球的編號(hào)互不相同”,則事件包含了個(gè)基本事件,所以.考點(diǎn):1.計(jì)數(shù)原理;1.古典概型.14.【解析】

過(guò)點(diǎn)做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過(guò)點(diǎn)做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.【點(diǎn)睛】本題主要考查平面向量的線性運(yùn)算和平面向量的數(shù)量積,由題意作出是解題的關(guān)鍵.15.【解析】

由題意畫出圖形,補(bǔ)形為長(zhǎng)方體,求其對(duì)角線長(zhǎng),可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補(bǔ)形為長(zhǎng)方體,則過(guò)一個(gè)頂點(diǎn)的三條棱長(zhǎng)分別為1,1,,則長(zhǎng)方體的對(duì)角線長(zhǎng)為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點(diǎn)睛】本題考查多面體外接球表面積的求法,補(bǔ)形是關(guān)鍵,屬于中檔題.16.9【解析】

根據(jù)集合交集的定義即得.【詳解】集合,,,,則a的值是9.故答案為:9【點(diǎn)睛】本題考查集合的交集,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1),有97.5%的把握認(rèn)為是否同意父母生“二孩”與“性別”有關(guān);(2)詳見解析.【解析】

(1)根據(jù)表格及同意父母生“二孩”占60%可求出,,根據(jù)公式計(jì)算結(jié)果即可確定有97.5%的把握認(rèn)為是否同意父母生“二孩”與“性別”有關(guān)(2)由題意可知X服從二項(xiàng)分布,利用公式計(jì)算概率及期望即可.【詳解】(1)因?yàn)?00人中同意父母生“二孩”占60%,所以,文(2)由列聯(lián)表可得而所以有97.5%的把握認(rèn)為是否同意父母生“二孩”與“性別”有關(guān)(2)①由題知持“同意”態(tài)度的學(xué)生的頻率為,即從學(xué)生中任意抽取到一名持“同意”態(tài)度的學(xué)生的概率為.由于總體容量很大,故X服從二項(xiàng)分布,即從而X的分布列為X01234X的數(shù)學(xué)期望為【點(diǎn)睛】本題主要考查了相關(guān)性檢驗(yàn)、二項(xiàng)分布,屬于中檔題.18.(1);(2)證明見解析.【解析】

(1)由題意求得的坐標(biāo),代入橢圓方程求得,由此求得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,可得關(guān)于的一元二次方程,設(shè)出的坐標(biāo),分別求出直線與直線的方程,從而求得兩點(diǎn)的縱坐標(biāo),利用根與系數(shù)關(guān)系可化簡(jiǎn)證得為定值.【詳解】(1)由已知可得:,代入橢圓方程得:橢圓方程為;(2)設(shè)直線CD的方程為,代入,得:設(shè),,則有,則AC的方程為,令,得BD的方程為,令,得,證畢.【點(diǎn)睛】本題考查橢圓方程的求法,考查直線與橢圓位置關(guān)系的應(yīng)用,考查計(jì)算能力,是難題.19.(Ⅰ).(Ⅱ).【解析】

(Ⅰ)由等差數(shù)列中項(xiàng)性質(zhì)和等比數(shù)列的通項(xiàng)公式,解方程可得首項(xiàng)和公比,可得所求通項(xiàng)公式;(Ⅱ),由數(shù)列的錯(cuò)位相減法求和可得,解方程可得所求值.【詳解】(Ⅰ)等比數(shù)列,其公比,且滿足,和的等差中項(xiàng)是即有,解得:(Ⅱ)由(Ⅰ)知:則相減可得:化簡(jiǎn)可得:,即為解得:【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的錯(cuò)位相減法求和,以及方程思想和運(yùn)算能力,屬于中檔題.20.(1)(2)①,,②72【解析】

(1)將每組數(shù)據(jù)的組中值乘以對(duì)應(yīng)的頻率,然后再將結(jié)果相加即可得到亮燈時(shí)長(zhǎng)的平均數(shù),將此平均數(shù)除以(個(gè)小時(shí)),即可得到的估計(jì)值;(2)①利用二項(xiàng)分布的均值與方差的計(jì)算公式進(jìn)行求解;②先根據(jù)條件計(jì)算出的取值范圍,然后根據(jù)并結(jié)合正態(tài)分布概率的對(duì)稱性,求解出在滿足取值范圍下對(duì)應(yīng)的概率.【詳解】(1)平均時(shí)間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時(shí)間長(zhǎng)度為72分鐘.【點(diǎn)睛】本題考查根據(jù)頻數(shù)分布表求解平均數(shù)、幾何概型(長(zhǎng)度模型)、二項(xiàng)分布的均值與方差、正態(tài)分布的概率計(jì)算,屬于綜合性問(wèn)題,難度一般.(1)如果,則;(2)計(jì)算正態(tài)分布中的概率,一定要活用正態(tài)分布圖象的對(duì)稱性對(duì)應(yīng)概率的對(duì)稱性.21.(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論