




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
附錄英文原文SeenerecognitionforminerescuerobotocalizationbasedonvisionAbstract:AnewscenerecognitionsystemwaspresentedbasedonfuzzylogicandhiddenMarkovmode1(HMM)thatcanbeapp1iedinminerescuerobotlocalizationduringemergencies.Thesystemusesmonocu1arcameratoacquireomni—directionalimagesofthemineenvironmentwheretherobotlocates.Byadoptingcenter-surrounddifferencemethod,thesalientloca1imageregionsareextractedfromtheimagesasnaturallandmarks.TheselandmarksareorganizedbyusingHMMtorepresentthescenewheretherobotis,andfuzzylogicstrategyisusedtomatchthesceneand1andmark.Bythisway,theloca1izationproblem,whichisthescenerecognitionprob1eminthesystem,canbeconvertedintotheevaluationproblemofHMM.Thecontributionsoftheseski1lsmakethesystemhavetheabilitytodealwithchangesinscale,2Drotationandviewpoint.Theresultsofexperimentsa1soprovethatthesystemhashigherratioofrecognitionandloca1izationinbothstaticanddynamicmineenvironments.Keywords:robotlocation;scenerecognition;salientimage;matchingstrategy;fuzzy1ogic;hiddenMarkovmode11IntroductionSearchandrescueindisasterareainthedomainofrobotisaburgeoningandcha11engingsubject[1].Minerescuerobotwasdevelopedtoenterminesduringemergenciestolocatepossibleescaperoutesforthosetrappedinsideanddeterminewhetheritissafeforhumantoenterornot.Localizationisafundamentalprobleminthisfield.Localizationmethodsbasedoncameracanbemainlyclassifiedintogeometric,topologicalorhybridones[2].Withitsfeasibilityandeffectiveness,scenerecognitionbecomesoneoftheimportanttechnologiesoftopologicallocalization.Current1ymostscenerecognitionmethodsarebasedongloba1imagefeaturesandhavetwodistinctstages:trainingoff1ineandmatchingon1ine.Duringthetrainingstage,robotcollectstheimagesoftheenvironmentwhereitworksandprocessestheimagestoextractg1oba1featuresthatrepresentthescene.Someapproacheswereusedtoanalyzethedata-setofimagedirect1yandsomeprimaryfeatureswerefound,suchasthePCAmethod[3].However,thePCAmethodisnoteffectiveindistinguishingtheclassesoffeatures.Anothertypeofapproachusesappearancefeaturesincludingco1or,textureandedgedensitytorepresenttheimage.Forexample,ZHOUetal[4]usedmultidimensionalhistogramstodescribeg1obalappearancefeatures.Thismethodissimplebutsensitivetosca1eandi1luminationchanges.Infact,allkindsofglobalimagefeaturesaresufferedfromthechangeofenvironment.LOWE[5]presentedaSIFTmethodthatusessimilarityinvariantdescriptorsformedbycharacteristicsealeandorientationatinterestpointstoobtainthefeatures.Thefeaturesareinvarianttoimagescaling,translation,rotationandpartia1lyinvarianttoilluminationchanges.ButSIFTmaygenerate1000ormoreinterestpoints,whichmayslowdowntheprocessordramatically.Duringthematchingstage,nearestneighborstrategy(NN)iswide1yadoptedforitsfaci1ityandintel1igibility[6].Butitcannotcapturethecontributionofindividualfeatureforscenerecognition.Inexperiments,theNNisnotgoodenoughtoexpressthesimi1aritybetweentwopatterns.Furthermore,theselectedfeaturescannotrepresentthescenethoroughlyaccordingtothestate-of-artpatternrecognition,whichmakesrecognitionnotreliab1e[7].Sointhisworkanewrecognitionsystemispresented,whichismorereliableandeffectiveifitisusedinacomplexmineenvironment.Inthissystem,weimprovetheinvariancebyextractingsalientlocalimageregionsas1andmarkstoreplacethewholeimagetodealwithlargechangesinscale,2Drotationandviewpoint.Andthenumberofinterestpointsisreducedeffectively,whichmakestheprocessingeasier.FuzzyrecognitionstrategyisdesignedtorecognizethelandmarksinplaceofNN,whichcanstrengthenthecontributionofindividualfeatureforscenerecognition.Becauseofitspartialinformationresumingability,hiddenMarkovmodelisadoptedtoorganizethose1andmarks,whichcancapturethestructureorrelationshipamongthem.Soscenerecognitioncanbetransformedtotheevaluationprob1emofHMM,whichmakesrecognitionrobust.Salient1ocalimageregionsdetectionResearchesonbio1ogicalvisionsystemindicatethatorganism(likedrosophi1a)oftenpaysattentiontocertainspecialregionsinthescenefortheirbehavioralre1evanceorlocalimagecueswhileobservingsurroundings[8].Theseregionscanbetakenasnaturallandmarkstoeffectivelyrepresentanddistinguishdifferentenvironments.Inspiredbythose,weusecenter-surrounddifferencemethodtodetectsalientregionsinmulti—scaleimagespaces.Theopponenciesofcolorandtexturearecomputedtocreatethesaliencymap.Follow-up,sub-imagecenteredatthesalientpositioninSistakenasthelandmarkregion.Thesizeofthelandmarkregioncanbedecidedadaptivelyaccordingtothechangesofgradientorientationofthelocalimage[11].Mobilerobotnavigationrequiresthatnaturallandmarksshouldbedetectedstablywhenenvironmentschangetosomeextent.Tovalidatetherepeatabilityonlandmarkdetectionofourapproach,wehavedonesomeexperimentsonthecasesofscale,2Drotationandviewpointchangesetc.Fig.1showsthatthedoorisdetectedforitssaliencywhenviewpointchanges.Moredetailedanalysisandresultsaboutscaleandrotationcanbefoundinourpreviousworks[12].ScenerecognitionandlocalizationDifferentfromotherscenerecognitionsystems,oursystemdoesn'tneedtrainingoffline.Inotherwords,ourscenesarenotclassifiedinadvance.Whenrobotwanders,scenescapturedatintervalsoffixedtimeareusedtobuildthevertexofatopologicalmap,whichrepresentstheplacewhererobotlocates.Althoughthemap'sgeometriclayoutisignoredbythe1oca1izationsystem,itisusefulforvisualizationanddebugging[13]andbeneficialtopathplanning.Solocalizationmeanssearchingthebestmatchofcurrentsceneonthemap.InthispaperhiddenMarkovmodelisusedtoorganizetheextractedlandmarksfromcurrentsceneandcreatethevertexoftopologicalmapforitspartialinformationresumingabi1ity.Resembledbypanoramicvisionsystem,robotlooksaroundtogetomni-images.FromFig?1Experimentonviewpointchangeseachimage,salientlocalregionsaredetectedandformedtobeasequence,namedaslandmarksequencewhoseorderisthesameastheimagesequence.ThenahiddenMarkovmode1iscreatedbasedonthelandmarksequenceinvolvingksalientlocalimageregions,whichistakenasthedescriptionoftheplacewheretherobotlocates.InoursystemEVI-D70camerahasaviewfieldof±170°.Consideringtheoverlapeffect,wesample
environmentevery45°toget8images.Letthe8imagesashiddenstateSi(1<i<8),thecreatedHMMcanbeillustratedbyFig.2.TheparametersofHMM,aijandbjk,areachievedbylearning,usingBaulm-WelchaIgorithm[14].Thethresholdofconvergenceissetas0.001.Asfortheedgeoftopologicalmap,weassignitwithdistanceinformationbetweentwovertices.Thedistancescanbecomputedaccordingtoodometryreadings.Fig.2HMFig.2HMMofenvironmentTolocateitselfonthetopo1ogicalmap,robotmustrunits‘eye'onenvironmentandextractalandmarksequenceLI'—Lk',thensearchthemapforthebestmatchedvertex(seene).Differentfromtraditionalprobabilisticlocalization[15],inoursystemlocalizationproblemcanbeconvertedtotheeva1uationproblemofHMM.Thevertexwiththegreatesteva1uationva1ue,whichmustalsobegreaterthanathreshold,istakenasthebestmatchedvertex,whichindicatesthemostpossibleplacewheretherobotis.Matchstrategybasedonfuzzy1ogicOneofthekeyissuesinimagematchproblemistochoosethemosteffectivefeaturesordescriptorstorepresenttheoriginalimage.Duetorobotmovement,thoseextractedlandmarkregionswillchangeatpixelleve1.So,thedescriptorsorfeatureschosenshouldbeinvarianttosomeextentaccordingtothechangesofscale,rotationandviewpointetc.Inthispaper,weuse4featurescommonlyadoptedinthecommunitythatarebrieflydescribedasfollows.GO:Gradientorientation.Ithasbeenprovedthati1luminationandrotationchangesarelikelytohave1essinfluenceonit[5].ASMandENT:Angularsecondmomentandentropy,whicharetwotexturedescriptors.H:Hue,whichisusedtodescribethefundamentalinformationoftheimage.Anotherkeyissueinmatchproblemistochooseagoodmatchstrategyora1gorithm.Usuallynearestneighborstrategy(NN)isusedtomeasurethesimilaritybetweentwopatterns.ButwehavefoundintheexperimentsthatNNcan'tadequatelyexhibittheindividualdescriptororfeature'scontributiontosimilaritymeasurement.AsindicatedinFig.4,theinputimageFig.4(a)comesfromdifferentviewofFig.4(b).ButthedistancebetweenFigs.4(a)and(b)computedbyJeffereydivergenceislargerthanFig.4(c).Toso1vetheproblem,wedesignanewmatchalgorithmbasedonfuzzylogicforexhibitingthesubt1echangesofeachfeatures.Thealgorithmisdescribedasbelow.Andthelandmarkinthedatabasewhosefusedsimilaritydegreeishigherthananyothersistakenasthebestmatch.Thematchresu1tsofFigs.2(b)and(c)aredemonstratedbyFig.3.Asindicated,thismethodcanmeasurethesimilarityeffectivelybetweentwopatterns.Fig.3Similaritycomputedusingfuzzystrategy5ExperimentsandanalysisThe1ocalizationsystemhasbeenimplementedonamobilerobot,whichisbui1tbyourlaboratory.ThevisionsystemiscomposedofaCCDcameraandaframe-grabberIVC-4200.Thereso1utionofimageissettobe400x320andthesamplefrequencyissettobe10frames/s.Thecomputersystemiscomposedof1GHzprocessorand512Mmemory,whichiscarriedbytherobot.Presentlytherobotworksinindoorenvironments.BecauseHMMisadoptedtorepresentandrecognizethescene,oursystemhastheabilitytocapturethediscriminationaboutdistributionofsalientlocalimageregionsanddistinguishsimilarsceneseffectively.Table1showstherecognitionresultofstaticenvironmentsincluding51anewaysandasilo.10scenesareselectedfromeachenvironmentandHMMsarecreatedforeachscene.Then20scenesarecol1ectedwhentherobotenterseachenvironmentsubsequentlytomatchthe60HMMsabove.Inthetable,“truth”meansthatthescenetobelocalizedmateheswiththerightscene(theevaluationvalueofHMMis30%greaterthanthesecondhighevaluation).“Uncertainty”meansTOC\o"1-5"\h\zthattheevaluationvalueofHMMisgreaterthanthesecondhighevaluationunder10%.“Errormatch”meansthatthescenetobelocalizedmatcheswiththewrongscene.Inthetable,theratiooferrormatchis0.Butitispossiblethatthescenetobelocalizedcan'tmatchanyscenesandnewvertexesarecreated.Furthermore,the“ratiooftruth”aboutsi1oislowerbecausesalientcuesarefewerinthiskindofenvironment.Intheperiodofautomaticexploring,simi1arscenescanbecombined.Theprocesscanbesummarizedas:whenloca1izationsucceeds,thecurrentlandmarksequenceisaddedtotheaccompanyingobservationsequenceofthematchedvertexun-repeatedlyaccordingtotheirorientation(includingtheangleoftheimagefromwhichthesalientlocalregionandtheheadingoftherobotcome).TheparametersofHMMarelearnedagain.Comparedwiththeapproachesusingappearancefeaturesofthewho1eimage(Method2,M2),oursystem(M1)useslocalsalientregionstolocalizeandmap,whichmakesithavemoretoleranceofscale,viewpointchangescausedbyrobot'smovementandhigherratioofrecognitionandfeweramountofverticesonthetopologicalmap.So,oursystemhasbetterperformanceindynamicenvironment.ThesecanbeseeninTable2.Laneways1,2,4,5areinoperationwheresomeminersareworking,whichpuzzletherobot.6Conclusions1)Salientloca1imagefeaturesareextractedtoreplacethewhol??????q?q?*eimagetoparticipatemrecognition,whichimprovetheto1eranceofchangesinscale,2Drotationandviewpointofenvironmentimage.2)Fuzzylogicisusedtorecognizethelocalimage,andemphasizetheindividualfeature'contributiontorecognition,whichimprovesthereliabilityoflandmarks.HMMisusedtocapturethestructureorrelationshipofthoselocalimages,whichconvertsthescenerecognitionproblemintotheevaluationproblemofHMM.Theresultsfromtheaboveexperimentsde/r
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 組織學(xué)試題及答案
- 合肥保安考試題及答案
- 航空制圖考試題及答案
- 藥理試題及答案
- 商務(wù)樓公司年會(huì)策劃方案
- 團(tuán)委運(yùn)動(dòng)活動(dòng)方案
- 商場(chǎng)垃圾尋寶活動(dòng)方案
- 商圈爆破活動(dòng)方案
- 團(tuán)隊(duì)溝通活動(dòng)方案
- 圖書(shū)漂流評(píng)比活動(dòng)方案
- 浙江省溫州市鹿城區(qū)2023-2024學(xué)年八年級(jí)下學(xué)期科學(xué)期末質(zhì)量檢測(cè)綜合模擬卷
- 大樹(shù)吊裝專(zhuān)項(xiàng)施工方案
- (XX)XX縣2021年度變更調(diào)查技術(shù)設(shè)計(jì)書(shū)
- 地震的應(yīng)急逃生知識(shí)
- 藥品配送服務(wù)應(yīng)急預(yù)案
- 03 配電類(lèi)“兩種人”安規(guī)綜合能力測(cè)試題庫(kù)
- 人工智能倫理導(dǎo)論- 課件 第3、4章 人工智能倫理、人工智能風(fēng)險(xiǎn)
- 工業(yè)管道技術(shù)交底
- ?;钒踩芾砼嘤?xùn)模板如何正確穿戴和使用防護(hù)裝備
- 基于單片機(jī)的多路數(shù)據(jù)采集系統(tǒng)設(shè)計(jì)(附源程序及原理圖)
- 《跨部門(mén)溝通與協(xié)調(diào)》課件
評(píng)論
0/150
提交評(píng)論