2023屆廣東省江門市臺山市數(shù)學九年級上冊期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
2023屆廣東省江門市臺山市數(shù)學九年級上冊期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
2023屆廣東省江門市臺山市數(shù)學九年級上冊期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
2023屆廣東省江門市臺山市數(shù)學九年級上冊期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
2023屆廣東省江門市臺山市數(shù)學九年級上冊期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖是由五個相同的小立方塊搭成的幾何體,這個幾何體的俯視圖是()A. B. C. D.2.下列圖形:(1)等邊三角形,(2)矩形,(3)平行四邊形,(4)菱形,是中心對稱圖形的有()個A.4 B.3 C.2 D.13.如圖,中,點,分別是邊,上的點,,點是邊上的一點,連接交線段于點,且,,,則S四邊形BCED()A. B. C. D.4.點、都在反比例函數(shù)的圖象上,則、的大小關系是()A. B. C. D.不能確定5.使得關于的不等式組有解,且使分式方程有非負整數(shù)解的所有的整數(shù)的和是()A.-8 B.-10 C.-16 D.-186.矩形不具備的性質是()A.是軸對稱圖形 B.是中心對稱圖形 C.對角線相等 D.對角線互相垂直7.下列說法錯誤的是A.必然事件發(fā)生的概率為 B.不可能事件發(fā)生的概率為C.有機事件發(fā)生的概率大于等于、小于等于 D.概率很小的事件不可能發(fā)生8.關于二次函數(shù)y=﹣(x+1)2+2的圖象,下列判斷正確的是()A.圖象開口向上B.圖象的對稱軸是直線x=1C.圖象有最低點D.圖象的頂點坐標為(﹣1,2)9.如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑OC為2,則弦BC的長為()A.1 B. C.2 D.10.如圖,△ABC內接于圓,D是BC上一點,將∠B沿AD翻折,B點正好落在圓點E處,若∠C=50°,則∠BAE的度數(shù)是()A.40° B.50° C.80° D.90°二、填空題(每小題3分,共24分)11.如圖,在⊙O中,AB是⊙O的弦,CD是⊙O的直徑,CD⊥AB于點M,若AB=CM=4,則⊙O的半徑為_____.12.如圖,在中,,點是邊的中點,,則的值為___________.13.如圖,圓錐的底面直徑,母線的中點處有一食物,一只小螞蟻從點出發(fā)沿圓錐表面到處覓食,螞蟻走過的最短路線長為___________14.在△ABC中,已知(sinA-)2+│tanB-│=1.那么∠C=_________度.15.已知,且,則的值為__________.16.如圖,是的直徑,弦與弦長度相同,已知,則________.17.由一些大小相同的小正方體搭成的幾何體的主視圖和俯視圖,如圖所示,則搭成該幾何體的小正方體最多是_____個.18.拋物線y=3(x﹣2)2+5的頂點坐標是_____.三、解答題(共66分)19.(10分)已知四邊形ABCD的四個頂點都在⊙O上,對角線AC和BD交于點E.(1)若∠BAD和∠BCD的度數(shù)之比為1:2,求∠BCD的度數(shù);(2)若AB=3,AD=5,∠BAD=60°,點C為劣弧BD的中點,求弦AC的長;(3)若⊙O的半徑為1,AC+BD=3,且AC⊥BD.求線段OE的取值范圍.20.(6分)計算:(1);(2)先化簡,再求值.,其中a=2020;21.(6分)如圖,AB是⊙O的直徑,AM和BN是⊙O的兩條切線,E為⊙O上一點,過點E作直線DC分別交AM,BN于點D,C,且CB=CE.(1)求證:DA=DE;(2)若AB=6,CD=4,求圖中陰影部分的面積.22.(8分)解方程(1)x2-6x-7=0;(2)(2x-1)2=1.23.(8分)文明交流互鑒是推動人類文明進步和世界和平發(fā)展的重要動力.2019年5月“亞洲文明對話大會”在北京成功舉辦,引起了世界人民的極大關注.某市一研究機構為了了解10~60歲年齡段市民對本次大會的關注程度,隨機選取了100名年齡在該范圍內的市民進行了調查,并將收集到的數(shù)據(jù)制成了尚不完整的頻數(shù)分布表、頻數(shù)分布直方圖和扇形統(tǒng)計圖,如下所示:(1)請直接寫出_______,_______,第3組人數(shù)在扇形統(tǒng)計圖中所對應的圓心角是_______度.(2)請補全上面的頻數(shù)分布直方圖.(3)假設該市現(xiàn)有10~60歲的市民300萬人,問40~50歲年齡段的關注本次大會的人數(shù)約有多少?24.(8分)如圖所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.點D由點A出發(fā)沿AB方向向點B勻速運動,同時點E由點B出發(fā)沿BC方向向點C勻速運動,它們的速度均為1cm/s.連接DE,設運動時間為t(s)(0<t<10),解答下列問題:(1)當t為何值時,△BDE的面積為7.5cm2;(2)在點D,E的運動中,是否存在時間t,使得△BDE與△ABC相似?若存在,請求出對應的時間t;若不存在,請說明理由.25.(10分)受全國生豬產(chǎn)能下降的影響,豬肉價格持續(xù)上漲,某超市豬肉8月份平均價格為25元/斤,10月份平均價格為36元/斤,求該超市豬肉價格平均每月增長的百分率.26.(10分)如圖,身高1.6米的小明站在距路燈底部O點10米的點A處,他的身高(線段AB)在路燈下的影子為線段AM,已知路燈燈桿OQ垂直于路面.(1)在OQ上畫出表示路燈燈泡位置的點P;(2)小明沿AO方向前進到點C,請畫出此時表示小明影子的線段CN;(3)若AM=2.5米,求路燈燈泡P到地面的距離.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】找到從上面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在俯視圖中.【詳解】從上面看易得上面一層有3個正方形,下面左邊有一個正方形.故選A.【點睛】本題考查了三視圖的知識,俯視圖是從物體的上面看得到的視圖.2、B【解析】根據(jù)中心對稱圖形的概念判斷即可.【詳解】矩形,平行四邊形,菱形是中心對稱圖形,等邊三角形不是中心對稱圖形.故選B.【點睛】本題考查了中心對稱圖形的概念,判斷中心對稱圖形的關鍵是要尋找對稱中心,旋轉180度后兩部分重合.3、B【分析】由,,求得GE=4,由可得△ADG∽△ABH,△AGE∽△AHC,由相似三角形對應成比例可得,得到HC=5,再根據(jù)相似三角形的面積比等于相似比的平方可得,S△ABC=40.5,再減去△ADE的面積即可得到四邊形BCED的面積.【詳解】解:∵,,∴GE=4∵∴△ADG∽△ABH,△AGE∽△AHC∴即,解得:HC=6∵DG:GE=2:1∴S△ADG:S△AGE=2:1∵S△ADG=12∴S△AGE=6,S△ADE=S△ADG+S△AGE=18∵∴△ADE∽△ABC∴S△ADE:S△ABC=DE2:BC2解得:S△ABC=40.5S四邊形BCED=S△ABC-S△ADE=40.5-18=22.5故答案選:B.【點睛】本題考查相似三角形的性質和判定.4、A【分析】根據(jù)反比例函數(shù)的性質,圖象在二、四象限,在雙曲線的同一支上,y隨x的增大而增大,則-3<-1<0,可得.【詳解】解:∵k=-1<0,

∴圖象在二、四象限,且在雙曲線的同一支上,y隨x增大而增大

∵-3<-1<0

∴y1<y2,

故選:A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,熟練掌握反比例函數(shù)的性質是解題的關鍵.5、D【分析】根據(jù)不等式組的解集的情況,得出關于m的不等式,求得m的取值范圍,再解分式方程得出x,根據(jù)x是非負整數(shù),得出m所有值的和.【詳解】解:∵關于的不等式組有解,則,∴,又∵分式方程有非負整數(shù)解,∴為非負整數(shù),∵,∴-10,-6,-2由,故答案選D.【點睛】本題考查含參數(shù)的不等式組及含參數(shù)的分式方程,能夠準確解出不等式組及方程是解題的關鍵.6、D【分析】依據(jù)矩形的性質進行判斷即可.【詳解】解:矩形不具備的性質是對角線互相垂直,故選:D.【點睛】本題考查了矩形的性質,熟練掌握性質是解題的關鍵7、D【分析】利用概率的意義分別回答即可得到答案.概率的意義:必然事件就是一定發(fā)生的事件,概率是1;不可能發(fā)生的事件就是一定不發(fā)生的事件,概率是0;隨機事件是可能發(fā)生也可能不發(fā)生的事件,概率>0且<1;不確定事件就是隨機事件.【詳解】解:A、必然發(fā)生的事件發(fā)生的概率為1,正確;

B、不可能發(fā)生的事件發(fā)生的概率為0,正確;

C、隨機事件發(fā)生的概率大于0且小于1,正確;

D、概率很小的事件也有可能發(fā)生,故錯誤,

故選D.【點睛】本題考查了概率的意義及隨機事件的知識,解題的關鍵是了解概率的意義.8、D【解析】二次函數(shù)的頂點式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常數(shù)),它的對稱軸是x=h,頂點坐標是(h,k),據(jù)此進行判斷即可.【詳解】∵﹣1<0,∴函數(shù)的開口向下,圖象有最高點,這個函數(shù)的頂點是(﹣1,2),對稱軸是x=﹣1,∴選項A、B、C錯誤,選項D正確,故選D.【點睛】本題考查了二次函數(shù)的性質,熟練掌握拋物線的開口方向,對稱軸,頂點坐標是解題的關鍵.9、D【分析】先由圓周角定理求出∠BOC的度數(shù),再過點O作OD⊥BC于點D,由垂徑定理可知CD=BC,∠DOC=∠BOC=×120°=60°,再由銳角三角函數(shù)的定義即可求出CD的長,進而可得出BC的長.【詳解】解:∵∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,過點O作OD⊥BC于點D,∵OD過圓心,∴CD=BC,∠DOC=∠BOC=×120°=60°,∴CD=OC×sin60°=2×=,∴BC=2CD=2.故選D.【點睛】本題考查的是圓周角定理、垂徑定理及銳角三角函數(shù)的定義,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.10、C【分析】首先連接BE,由折疊的性質可得:AB=AE,即可得,然后由圓周角定理得出∠ABE和∠AEB的度數(shù),繼而求得∠BAE的度數(shù).【詳解】連接BE,如圖所示:由折疊的性質可得:AB=AE,∴,∴∠ABE=∠AEB=∠C=50°,∴∠BAE=180°﹣50°﹣50°=80°.故選C.【點睛】本題考查了圓周角定理,折疊的性質以及三角形內角和定理.熟練掌握圓周角定理是解題的關鍵,注意數(shù)形結合思想的應用.二、填空題(每小題3分,共24分)11、2.1【分析】連接OA,由垂徑定理得出AM=AB=2,設OC=OA=x,則OM=4﹣x,由勾股定理得出AM2+OM2=OA2,得出方程,解方程即可.【詳解】解:連接OA,如圖所示:∵CD是⊙O的直徑,CD⊥AB,∴AM=AB=2,∠OMA=90°,設OC=OA=x,則OM=4﹣x,根據(jù)勾股定理得:AM2+OM2=OA2,即22+(4﹣x)2=x2,解得:x=2.1;故答案為:2.1.【點睛】本題考查了垂徑定理、勾股定理、解方程;熟練掌握垂徑定理,并能進行推理計算是解決問題的關鍵.12、【分析】作高線DE,利用勾股定理求出AD,AB的值,然后證明,求DE的長,再利用三角函數(shù)定義求解即可.【詳解】過點D作于E∵點是邊的中點,∴,在中,由∴∴由勾股定理得∵∴∵∴∴∴∴∴故答案為:.【點睛】本題考查了三角函數(shù)的問題,掌握勾股定理和銳角三角函數(shù)的定義是解題的關鍵.13、15【分析】先將圓錐的側面展開圖畫出來,然后根據(jù)弧長公式求出的度數(shù),然后利用等邊三角形的性質和特殊角的三角函數(shù)在即可求出AD的長度.【詳解】圓錐的側面展開圖如下圖:∵圓錐的底面直徑∴底面周長為設則有解得又∴為等邊三角形為PB中點∴螞蟻從點出發(fā)沿圓錐表面到處覓食,螞蟻走過的最短路線長為故答案為:.【點睛】本題主要考查圓錐的側面展開圖,弧長公式和解直角三角形,掌握弧長公式和特殊角的三角函數(shù)值是解題的關鍵.14、2【分析】直接利用非負數(shù)的性質和特殊角的三角函數(shù)值求出∠A,∠B的度數(shù),進而根據(jù)三角形內角和定理得出答案.【詳解】∵(sinA)2+|tanB|=1,∴sinA1,tanB1,∴sinA,tanB,∴∠A=45°,∠B=61°,∴∠C=181°-∠A-∠B=181°-45°-61°=2°.故答案為:2.【點睛】本題考查了特殊角的三角函數(shù)值,正確記憶相關數(shù)據(jù)是解答本題的關鍵.15、1【解析】分析:直接利用已知比例式假設出a,b,c的值,進而利用a+b-2c=6,得出答案.詳解:∵,∴設a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案為1.點睛:此題主要考查了比例的性質,正確表示出各數(shù)是解題關鍵.16、【分析】連接BD交OC與E,得出,從而得出;再根據(jù)弦與弦長度相同得出,即可得出的度數(shù).【詳解】連接BD交OC與E是的直徑弦與弦長度相同故答案為.【點睛】本題考查了圓周角定理,輔助線得出是解題的關鍵.17、1【分析】根據(jù)幾何體的三視圖可進行求解.【詳解】解:根據(jù)題意得:則搭成該幾何體的小正方體最多是1+1+1+2+2=1(個).故答案為1.【點睛】本題主要考查幾何體的三視圖,熟練掌握幾何體的三視圖是解題的關鍵.18、(2,5).【解析】試題分析:由于拋物線y=a(x﹣h)2+k的頂點坐標為(h,k),由此即可求解.解:∵拋物線y=3(x﹣2)2+5,∴頂點坐標為:(2,5).故答案為(2,5).考點:二次函數(shù)的性質.三、解答題(共66分)19、(1)120°;(2);(3)≤OE≤【分析】(1)利用圓內接四邊形對角互補構建方程解決問題即可.(2)將△ACD繞點C逆時針旋轉120°得△CBE,根據(jù)旋轉的性質得出∠E=∠CAD=30°,BE=AD=5,AC=CE,求出A、B、E三點共線,解直角三角形求出即可;(3)由題知AC⊥BD,過點O作OM⊥AC于M,ON⊥BD于N,連接OA,OD,判斷出四邊形OMEN是矩形,進而得出OE2=2﹣(AC2+BD2),設AC=m,構建二次函數(shù),利用二次函數(shù)的性質解決問題即可.【詳解】解:(1)如圖1中,∵四邊形ABCD是⊙O的內接四邊形,∴∠A+∠C=180°,∵∠A:∠C=1:2,∴設∠A=x,∠C=2x,則x+2x=180°,解得,x=60°,∴∠C=2x=120°.(2)如圖2中,∵A、B、C、D四點共圓,∠BAD=60°,∴∠BCD=180°﹣60°=120°,∵點C為弧BD的中點,∴BC=CD,∠CAD=∠CAB=∠BAD=30°,將△ACD繞點C逆時針旋轉120°得△CBE,如圖2所示:則∠E=∠CAD=∠CAB=30°,BE=AD=5,AC=CE,∴∠ABC+∠EBC=(180°﹣∠CAB﹣∠ACB)+(180°﹣∠E﹣∠BCE)=360°﹣(∠CAB+∠ACB+∠ABC)=360°﹣180°=180°,∴A、B、E三點共線,過C作CM⊥AE于M,∵AC=CE,∴AM=EM=AE=(AB+AD)=×(3+5)=4,在Rt△AMC中,AC=.(3)過點O作OM⊥AC于M,ON⊥BD于N,連接OA,OD,∵OA=OD=1,OM2=OA2﹣AM2,ON2=OD2﹣DN2,AM=AC,DN=BD,AC⊥BD,∴四邊形OMEN是矩形,∴ON=ME,OE2=OM2+ME2,∴OE2=OM2+ON2=2﹣(AC2+BD2)設AC=m,則BD=3﹣m,∵⊙O的半徑為1,AC+BD=3,∴1≤m≤2,OE2=2﹣[(AC+BD)2﹣2AC×BD]=﹣m2+m﹣=﹣(m﹣)2+,∴≤OE2≤,∴≤OE≤.【點睛】本題主要考查的是圓和四邊形的綜合應用,掌握圓和四邊形的基本性質結合題目條件分析題目隱藏條件是解題的關鍵.20、(1);(2),1.【分析】(1)把分式方程化為整式方程,即可求解;(2)根據(jù)分式的運算法則進行化簡,再代入a即可求解.【詳解】解:(1)去分母得:解得:檢驗:當時,∴是原分式方程的解;(2)=當時,原式=1.【點睛】此題主要考查分式方程與分式化簡求值,解題的關鍵是熟知其運算法則.21、(1)證明見解析;(2)【分析】(1)連接OE,BE,根據(jù)已知條件證明CD為⊙O的切線,然后再根據(jù)切線長定理即可證明DA=DE;(2)如圖,連接OC,過點D作DF⊥BC于點F,根據(jù)S陰影部分=S四邊形BCEO﹣S扇形OBE,利用分割法即可求得陰影部分的面積.【詳解】(1)如圖,連接OE、BE,∵OB=OE,∴∠OBE=∠OEB.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC為⊙O的切線,∴∠OEC=∠OBC=90°;∵OE為半徑,∴CD為⊙O的切線,∵AD切⊙O于點A,∴DA=DE;(2)如圖,連接OC,過點D作DF⊥BC于點F,則四邊形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD=4,∵CF==2,∴BC﹣AD=2,∴BC=3,在直角△OBC中,tan∠BOC==,∴∠BOC=60°.在△OEC與△OBC中,,∴△OEC≌△OBC(SSS),∴∠BOE=2∠BOC=120°,∴S陰影部分=S四邊形BCEO﹣S扇形OBE=2×BC?OB﹣=9﹣3π.【點睛】本題考查了切線的判定與性質、切線長定理,扇形的面積等,正確添加輔助線,熟練運用相關知識是解題的關鍵.22、(1)x1=7,x2=-1;(2)x1=2,x2=-1【分析】(1)根據(jù)配方法法即可求出答案.(2)根據(jù)直接開方法即可求出答案;【詳解】解:(1)x2-6x+1-1-7=0(x-3)2=16x-3=±4x1=7,x2=-1(2)2x-1=±32x=1±3x1=2,x2=-1【點睛】本題考查了解一元二次方程,觀察所給方程的形式,分別使用配方法和直接開方法求解.23、(1)25,20,126;(2)見解析;(2)60萬人.【分析】(1)用抽樣人數(shù)-第1組人數(shù)-第3組人數(shù)-第4組人數(shù)-第5組人數(shù),可得a的值,用第4組的人數(shù)÷抽樣人數(shù)×100%可以求得m的值,用360°×第3組人數(shù)在抽樣中所占的比例可得第3組在扇形統(tǒng)計圖中所對應的圓心角的度數(shù);(2)根據(jù)(1)中a的值,可以將頻數(shù)分布直方圖補充完整;(3)用市民人數(shù)×第4組(40~50歲年齡段)的人數(shù)在抽樣中所占的比例可以計算出40~50歲年齡段的關注本次大會的人數(shù)約有多少.【詳解】(1)a=100﹣5﹣35﹣20﹣15=25,m%=(20÷100)×100%=20%,第3組人數(shù)在扇形統(tǒng)計圖中所對應的圓心角是:360°126°.故答案為:25,20,126;(2)由(1)知,20≤x<30有25人,補全的頻數(shù)分布直方圖如圖所示;(3)30060(萬人).答:40~50歲年齡段的關注本次大會的人數(shù)約有60萬人.【點睛】本題考查了頻數(shù)分布直方圖、頻數(shù)分布表、扇形統(tǒng)計圖、用樣本估計總體,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.24、(1)t為3秒時,△BDE的面積為7.3cm3;(3)存在時間t為或秒時,使得△BDE與△ABC相似.【分析】(/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論