2023年海南省重點名校高三下學期一??荚嚁祵W試題(含答案解析)_第1頁
2023年海南省重點名校高三下學期一??荚嚁祵W試題(含答案解析)_第2頁
2023年海南省重點名校高三下學期一??荚嚁祵W試題(含答案解析)_第3頁
2023年海南省重點名校高三下學期一??荚嚁祵W試題(含答案解析)_第4頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則全集則下列結論正確的是()A. B. C. D.2.在中,,,,點滿足,則等于()A.10 B.9 C.8 D.73.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.4.已知復數(為虛數單位)在復平面內對應的點的坐標是()A. B. C. D.5.集合,則()A. B. C. D.6.已知拋物線上的點到其焦點的距離比點到軸的距離大,則拋物線的標準方程為()A. B. C. D.7.已知,則下列關系正確的是()A. B. C. D.8.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.9.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.10.函數的定義域為,集合,則()A. B. C. D.11.閱讀下側程序框圖,為使輸出的數據為31,則①處應填的數字為A.4 B.5 C.6 D.712.甲乙兩人有三個不同的學習小組,,可以參加,若每人必須參加并且僅能參加一個學習小組,則兩人參加同一個小組的概率為()A.B.C.D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數()的圖象與直線相切,則______.14.連續(xù)2次拋擲一顆質地均勻的骰子(六個面上分別標有數字1,2,3,4,5,6的正方體),觀察向上的點數,則事件“點數之積是3的倍數”的概率為____.15.已知為等比數列,是它的前項和.若,且與的等差中項為,則__________.16.已知均為非負實數,且,則的取值范圍為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)求的單調區(qū)間;(2)討論零點的個數.18.(12分)已知數列和,前項和為,且,是各項均為正數的等比數列,且,.(1)求數列和的通項公式;(2)求數列的前項和.19.(12分)為響應“堅定文化自信,建設文化強國”,提升全民文化修養(yǎng),引領學生“讀經典用經典”,某廣播電視臺計劃推出一檔“閱讀經典”節(jié)目.工作人員在前期的數據采集中,在某高中學校隨機抽取了120名學生做調查,統(tǒng)計結果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學和不喜歡的比例是5:3.(1)填寫下面列聯(lián)表,并根據聯(lián)表判斷是否有的把握認為喜歡閱讀中國古典文學與性別有關系?男生女生總計喜歡閱讀中國古典文學不喜歡閱讀中國古典文學總計(2)為做好文化建設引領,實驗組把該校作為試點,和該校的學生進行中國古典文學閱讀交流.實驗人員已經從所調查的120人中篩選出4名男生和3名女生共7人作為代表,這7個代表中有2名男生代表和2名女生代表喜歡中國古典文學.現(xiàn)從這7名代表中任選3名男生代表和2名女生代表參加座談會,記為參加會議的人中喜歡古典文學的人數,求5的分布列及數學期望附表及公式:.20.(12分)如圖,在三棱錐中,,,側面為等邊三角形,側棱.(1)求證:平面平面;(2)求三棱錐外接球的體積.21.(12分)定義:若數列滿足所有的項均由構成且其中有個,有個,則稱為“﹣數列”.(1)為“﹣數列”中的任意三項,則使得的取法有多少種?(2)為“﹣數列”中的任意三項,則存在多少正整數對使得且的概率為.22.(10分)為增強學生的法治觀念,營造“學憲法、知憲法、守憲法”的良好校園氛圍,某學校開展了“憲法小衛(wèi)士”活動,并組織全校學生進行法律知識競賽.現(xiàn)從全校學生中隨機抽取50名學生,統(tǒng)計他們的競賽成績,已知這50名學生的競賽成績均在[50,100]內,并得到如下的頻數分布表:分數段[50,60)[60,70)[70,80)[80,90)[90,100]人數51515123(1)將競賽成績在內定義為“合格”,競賽成績在內定義為“不合格”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關?合格不合格合計高一新生12非高一新生6合計(2)在(1)的前提下,按“競賽成績合格與否”進行分層抽樣,從這50名學生中抽取5名學生,再從這5名學生中隨機抽取2名學生,求這2名學生競賽成績都合格的概率.參考公式及數據:,其中.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【答案解析】

化簡集合,根據對數函數的性質,化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【題目詳解】由,則,故,由知,,因此,,,,故選:D【答案點睛】本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.2.D【答案解析】

利用已知條件,表示出向量,然后求解向量的數量積.【題目詳解】在中,,,,點滿足,可得則==【答案點睛】本題考查了向量的數量積運算,關鍵是利用基向量表示所求向量.3.D【答案解析】

根據題意畫出幾何關系,由四邊形的內切圓面積求得半徑,結合四邊形面積關系求得與等量關系,再根據基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【題目詳解】根據題意,畫出幾何關系如下圖所示:設四邊形的內切圓半徑為,雙曲線半焦距為,則所以,四邊形的內切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D【答案點睛】本題考查了雙曲線的定義及其性質的簡單應用,圓錐曲線與基本不等式綜合應用,屬于中檔題.4.A【答案解析】

直接利用復數代數形式的乘除運算化簡,求得的坐標得出答案.【題目詳解】解:,在復平面內對應的點的坐標是.故選:A.【答案點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,屬于基礎題.5.D【答案解析】

利用交集的定義直接計算即可.【題目詳解】,故,故選:D.【答案點睛】本題考查集合的交運算,注意常見集合的符號表示,本題屬于基礎題.6.B【答案解析】

由拋物線的定義轉化,列出方程求出p,即可得到拋物線方程.【題目詳解】由拋物線y2=2px(p>0)上的點M到其焦點F的距離比點M到y(tǒng)軸的距離大,根據拋物線的定義可得,,所以拋物線的標準方程為:y2=2x.故選B.【答案點睛】本題考查了拋物線的簡單性質的應用,拋物線方程的求法,屬于基礎題.7.A【答案解析】

首先判斷和1的大小關系,再由換底公式和對數函數的單調性判斷的大小即可.【題目詳解】因為,,,所以,綜上可得.故選:A【答案點睛】本題考查了換底公式和對數函數的單調性,考查了推理能力與計算能力,屬于基礎題.8.A【答案解析】

設,延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【題目詳解】設,延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.

故選:A.【答案點睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.9.C【答案解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.10.A【答案解析】

根據函數定義域得集合,解對數不等式得到集合,然后直接利用交集運算求解.【題目詳解】解:由函數得,解得,即;又,解得,即,則.故選:A.【答案點睛】本題考查了交集及其運算,考查了函數定義域的求法,是基礎題.11.B【答案解析】考點:程序框圖.分析:分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運行過程中各變量的值的變化情況,不難給出答案.解:程序在運行過程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當i<5時退出,故選B.12.A【答案解析】依題意,基本事件的總數有種,兩個人參加同一個小組,方法數有種,故概率為.二、填空題:本題共4小題,每小題5分,共20分。13.2【答案解析】

設切點由已知可得,即可解得所求.【題目詳解】設,因為,所以,即,又,.所以,即,.故答案為:.【答案點睛】本題考查導數的幾何意義,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,難度較易.14.【答案解析】總事件數為,目標事件:當第一顆骰子為1,2,4,6,具體事件有,共8種;當第一顆骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標事件共20中,所以。15.【答案解析】

設等比數列的公比為,根據題意求出和的值,進而可求得和的值,利用等比數列求和公式可求得的值.【題目詳解】由等比數列的性質可得,,由于與的等差中項為,則,則,,,,,因此,.故答案為:.【答案點睛】本題考查等比數列求和,解答的關鍵就是等比數列的公比,考查計算能力,屬于基礎題.16.【答案解析】

設,可得的取值范圍,分別利用基本不等式和,把用代換,結合的取值范圍求關于的二次函數的最值即可求解.【題目詳解】因為,,令,則,因為,當且僅當時等號成立,所以,,即,令則函數的對稱軸為,所以當時函數有最大值為,即.當且,即,或,時取等號;因為,當且僅當時等號成立,所以,令,則函數的對稱軸為,所以當時,函數有最小值為,即,當,且時取等號,所以.故答案為:【答案點睛】本題考查基本不等式與二次函數求最值相結合求代數式的取值范圍;考查運算求解能力和知識的綜合運用能力;基本不等式:和的靈活運用是求解本題的關鍵;屬于綜合型、難度大型試題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)見解析【答案解析】

(1)求導后分析導函數的正負再判斷單調性即可.(2),有零點等價于方程實數根,再換元將原方程轉化為,再求導分析的圖像數形結合求解即可.【題目詳解】(1)的定義域為,,當時,,所以在單調遞減;當時,,所以在單調遞增,所以的減區(qū)間為,增區(qū)間為.(2),有零點等價于方程實數根,令則原方程轉化為,令,.令,,∴,,,,,當時,,當時,.如圖可知①當時,有唯一零點,即有唯一零點;②當時,有兩個零點,即有兩個零點;③當時,有唯一零點,即有唯一零點;④時,此時無零點,即此時無零點.【答案點睛】本題主要考查了利用導數分析函數的單調性的方法,同時也考查了利用導數分析函數零點的問題,屬于中檔題.18.(1),;(2).【答案解析】

(1)令求出的值,然后由,得出,然后檢驗是否符合在時的表達式,即可得出數列的通項公式,并設數列的公比為,根據題意列出和的方程組,解出這兩個量,然后利用等比數列的通項公式可求出;(2)求出數列的前項和,然后利用分組求和法可求出.【題目詳解】(1)當時,,當時,.也適合上式,所以,.設數列的公比為,則,由,兩式相除得,,解得,,;(2)設數列的前項和為,則,.【答案點睛】本題考查利用求,同時也考查了等比數列通項的計算,以及分組求和法的應用,考查計算能力,屬于中等題.19.(1)見解析,沒有(2)見解析,【答案解析】

(1)根據題目所給數據填寫列聯(lián)表,計算出的值,由此判斷出沒有的把握認為喜歡閱讀中國古典文學與性別有關系.(2)先判斷出的所有可能取值,然后根據古典概型概率計算公式,計算出分布列并求得數學期望.【題目詳解】(1)男生女生總計喜歡閱讀中國古典文學423072不喜歡閱讀中國古典文學301848總計7248120所以,沒有的把握認為喜歡閱讀中國古典文學與性別有關系.(2)設參加座談會的男生中喜歡中國古典文學的人數為,女生中喜歡古典文學的人數為,則.且;;.所以的分布列為則.【答案點睛】本小題主要考查列聯(lián)表獨立性檢驗,考查隨機變量分布列和數學期望的求法,考查數據處理能力,屬于中檔題.20.(1)見解析;(2).【答案解析】

(1)設中點為,連接、,利用等腰三角形三線合一的性質得出,利用勾股定理得出,由線面垂直的判定定理可證得平面,再利用面面垂直的判定定理可得出平面平面;(2)先確定三棱錐的外接球球心的位置,利用三角形相似求出外接球的半徑,再由球體的體積公式可求得結果.【題目詳解】(1)設中點為,連接、,因為,所以.又,所以,又由已知,,則,所以,.又為正三角形,且,所以,因為,所以,,,平面,又平面,平面平面;(2)由于是底面直角三角形的斜邊的中點,所以點是的外心,由(1)知平面,所以三棱錐的外接球的球心在上.在中,的垂直平分線與的交點即為球心,記的中點為點,則.由與相似可得,所以.所以三棱錐外接球的體積為.【答案點睛】本題考查面面垂直的證明,同時也考查了三棱錐外接球體積的計算,找出外接球球心的位置是解答的關鍵,考查推理能力與計算能力,屬于中等題.21.(1)16;(2)115.【答案解析】

(1)易得使得的情況只有“”,“”兩種,再根據組合的方法求解兩種情況分別的情況數再求和即可.(2)易得“”共有種,“”共有種.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論