




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
第七章.圖像分割(ImageSegmentation)圖象采集圖象預(yù)處理圖象分割特征提取與描述-1特征選擇模式識別--2特征參數(shù)測量一.并行邊界技術(shù)二.串行邊界技術(shù)三.并行區(qū)域技術(shù)四.串行區(qū)域技術(shù)五.分割性能評價圖象分割:把圖象分成各具特性的區(qū)域,并提取感興趣目標(biāo)的技術(shù)和過程.這里的特性主要指的是:灰度,顏色,紋理或運動等.其一是通過直接確定區(qū)域間的邊界來實現(xiàn)分割的邊界方法;其二是將各像素劃歸到相應(yīng)物體或區(qū)域的像素聚類方法,即區(qū)域法;圖像中不同類型的邊界(a)邊界;(b)線;(c)折線變化;(d)緩慢的平滑變化(a)(b)(d)(c)FirstandSecondderivativesthesignsofthederivativeswouldbereversedforanedgethattransitionsfromlighttodarkEdgeDetectionthemostcommonapproachfordetectingmeaningfuldiscontinuitiesingraylevel.wediscussapproachesforimplementingfirst-orderderivative(Gradientoperator)second-orderderivative(Laplacianoperator)Here,wewilltalkonlyabouttheirpropertiesforedgedetection.ImageSegmentationImageSegmentationLaplacian(linearoperator)LaplacianoperatorImageSegmentationImageSegmentationGradientOperatorfirstderivativesareimplementedusingthemagnitudeofthegradient.themagnitudebecomesnonlinearcommonlyapprox.GradientdirectionLet(x,y)representthedirectionangleofthevectorfat(x,y)(x,y)=tan-1(Gy/Gx)Thedirectionofanedgeat(x,y)isperpendiculartothedirectionofthegradientvectoratthatpointCriteriathestrengthoftheresponseofthegradientoperatorusedtoproducetheedgepixelanedgepixelwithcoordinates(x0,y0)inapredefinedneighborhoodof(x,y)issimilarinmagnitudetothepixelat(x,y)if|f(x,y)-f(x0,y0)|ECriteriathedirectionofthegradientvectoranedgepixelwithcoordinates(x0,y0)inapredefinedneighborhoodof(x,y)issimilarinangletothepixelat(x,y)if|(x,y)-(x0,y0)|<ACriteriaApointinthepredefinedneighborhoodof(x,y)islinkedtothepixelat(x,y)ifbothmagnitudeanddirectioncriteriaaresatified.theprocessisrepeatedateverylocationintheimagearecordmustbekeptsimplybyassigningadifferentgrayleveltoeachsetoflinkededgepixels.Examplefindrectangleswhosesizesmakesthemsuitablecandidatesforlicenseplates
usehorizontalandverticalSobeloperatorslinkconditions:gradientvalue>25gradientdirectiondiffers<15
eliminateisolatedshortsegmentsHoughTransformation(Line)yi=axi+bb=-axi+yiab-planeorparameterspacexy-planeallpoints(xi,yi)containedonthesamelinemusthavelinesinparameterspacethatintersectat(a’,b’)Accumulatorcells(amax,amin)and(bmax,bmin)aretheexpectedrangesofslopeandinterceptvalues.allareinitializedtozeroifachoiceofapresultsinsolutionbqthenwelet
A(p,q)=A(p,q)+1attheendoftheprocedure,valueQinA(i,j)correspondstoQpointsinthexy-planelyingontheliney=aix+bjb=-axi+yi-planeproblemofusingequationy=ax+bisthatvalueofaisinfiniteforaverticalline.Toavoidtheproblem,useequationxcos+ysin=torepresentalineinstead.verticallinehas=90withequalstothepositivey-interceptor=-90withequalstothenegativey-interceptxcos+ysin=-plane
=90measuredwithrespecttox-axiswhereDisthedistancebetweencornersintheimageGeneralizedHoughTransformationcanbeusedforanyfunctionoftheformg(v,c)=0visavectorofcoordinatescisavectorofcoefficientsHoughTransformation(Circle)equation:(x-c1)2+(y-c2)2=c32threeparameters(c1,c2,c3)cubelikecellsaccumulatorsoftheformA(i,j,k)incrementc1andc2,solveofc3thatsatisfiestheequationupdatetheaccumulatorcorrespondingtothecellassociatedwithtriplet(c1,c2,c3)Edge-linkingbasedonHoughTransformationComputethegradientofanimageandthresholdittoobtainabinaryimage.Specifysubdivisionsinthe-plane.Examinethecountsoftheaccumulatorcellsforhighpixelconcentrations.Examinetherelationship(principallyforcontinuity)betweenpixelsinachosencell.Thresholdingimagewithdarkbackgroundand
alightobjectimagewithdarkbackgroundand
twolightobjectsBasicGlobalThresholdinggeneratebinaryimageuseTmidwaybetweenthemaxandmingraylevelsBasicGlobalThresholdingbasedonvisualinspectionofhistogramSelectaninitialestimateforT.SegmenttheimageusingT.Thiswillproducetwogroupsofpixels:G1consistingofallpixelswithgraylevelvalues>TandG2consistingofpixelswithgraylevelvaluesTComputetheaveragegraylevelvalues1and2forthepixelsinregionsG1andG2ComputeanewthresholdvalueT=0.5(1+2)Repeatsteps2through4untilthedifferenceinTinsuccessiveiterationsissmallerthanapredefinedparameterTo.Example:Heuristicmethodnote:theclearvalleyofthehistogramandtheeffectiveofthesegmentationbetweenobjectandbackgroundT0=03iterationswithresultT=125Example:AdaptiveThresholdingOptimalGlobalandAdaptiveThresholdingProbabilityoferroneouslyMinimumerrorDifferentiatingE(T)withrespecttoT(usingLeibniz’srule)andequatingtheresultto0findTwhichmakesifP1=P2thentheoptimumthresholdiswherethecurvep1(z)andp2(z)intersectGaussiandensityExample:usePDF=Gaussiandensity:p1(z)andp2(z)where1and12arethemeanandvarianceoftheGaussiandensityofoneobject2and22arethemeanandvarianceoftheGaussiandensityoftheotherobjectQuadraticequationifP1=P2or=0thentheoptimalthresholdistheaverageofthemeansRegion-BasedSegmentationBasicFormulationP(Ri)isalogicalpredicatepropertydefinedoverthepointsinsetRiex.P(Ri)=TRUEifallpixelinRihavethesamegraylevelRegionGrowingstartwithasetof“seed”pointsgrowingbyappendingtoeachseedthoseneighborsthathavesimilarpropertiessuchasspecificrangesofgraylevelRegionGrowingselectallseedpointswithgraylevel255criteria:theabsolutegray-leveldifferencebetweenanypixelandtheseedhastobelessthan65thepixelhastobe8-connectedtoatleastonepixelinthatregion(ifmore,theregionsaremerged)RegionsplittingandmergingQuadtreeSplitinto4disjointquadrantsanyregionRiforwhich
P(Ri)=FALSEMergeanyadjacentregionRjandRkforwhich
P(Ri
Rk)=TRUEStopwhennofurthermergingorsplittingispossible.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 辦公大樓保潔承包合同
- 技術(shù)開發(fā)合同模板簡明
- 院企合作科研合同標(biāo)準(zhǔn)模板
- 工業(yè)品交易合同模板轉(zhuǎn)讓合作協(xié)議
- 銀行軟件服務(wù)合同
- 小學(xué)生冬季滑冰知識
- 藥理學(xué)第二十章 抗心絞痛藥課件
- 微特電機在無人機飛行控制系統(tǒng)的應(yīng)用考核試卷
- 搪瓷材料在實驗室環(huán)境的應(yīng)用考核試卷
- 地下綜合管廊工程光纜敷設(shè)技術(shù)考核試卷
- 2024年沙洲職業(yè)工學(xué)院高職單招(英語/數(shù)學(xué)/語文)筆試歷年參考題庫含答案解析
- 2023對口升學(xué)計算機組裝試卷答案
- 小學(xué)中小學(xué)校園足球人教三年級全一冊踢球技術(shù)小學(xué)體育三年級足球腳內(nèi)側(cè)踢球教案
- 學(xué)校危險化學(xué)品自查記錄表
- 三菱gx developer用戶操作手冊
- 家譜樹形圖模板
- 工程交付培訓(xùn)記錄表
- 髖膝關(guān)節(jié)置換術(shù)后X線評價-PPT課件
- 蓋梁抱箍法施工計算書蓋梁抱箍法施工方案
- JIS G4305-2021 冷軋不銹鋼板材、薄板材和帶材
- (完整版)涼亭施工方案
評論
0/150
提交評論