電磁場與電磁波第25講矩形波導的傳播特性課件_第1頁
電磁場與電磁波第25講矩形波導的傳播特性課件_第2頁
電磁場與電磁波第25講矩形波導的傳播特性課件_第3頁
電磁場與電磁波第25講矩形波導的傳播特性課件_第4頁
電磁場與電磁波第25講矩形波導的傳播特性課件_第5頁
已閱讀5頁,還剩49頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

ElectromagneticFieldandWave電磁場與電磁波2011.5.211ElectromagneticFieldandWaveReview1.GeneralWaveBehaviorsalongUniformGuidingStructures2Review1.GeneralWaveBehavior33Maintopic1.RectangularWaveguides

4Maintopic1.RectangularWaveg1.RectangularWaveguides

Selecttherectangularcoordinatesystemandletthebroadsidebeplacedalongthe

x-axis,thenarrowsidealongthe

y-axis,andthepropagatingdirectionbealongthez-axis.azyxb,ForTMwaves,Hz=0

,andaccordingtothe

methodoflongitudinalfields,thecomponent

Ez

should

first

besolved,andfromwhichtheothercomponentscanbederived.

The

z-componentoftheelectricfieldintensitycanbewrittenas1.1TMwaves51.RectangularWaveguidesItsatisfiesthefollowingscalarHelmholtzequation,i.e.Inordertosolvetheaboveequation,themethodof

separationofvariables

isused.LetWeobtainwhereX"

denotes

thesecond

derivativeof

X

withrespectto

x,and

Y"

denotes

thesecond

derivativeof

Y

withrespectto

y.6ItsatisfiesthefollowingscaThe

onlyway

theequationcanbesatisfiedisthatbothtermsontheleftsideare

constants.

Nowlet

wherekx

and

ky

arecalledthe

separationconstants,andtheycanbefoundbyusingtheboundaryconditions.Obviously7Theonlywaytheequationcanwherealltheconstants

C1,C2,C3,C4,and

kx,ky,dependontheboundaryconditions.Thetwoequationsaresecondorderordinarydifferentialequations,andthegeneralsolutions,arerespectively

The

z-componentoftheelectricfieldintensitycanbewrittenasBoundaryconditions:azyxb,8wherealltheconstantsC1,C99Andallthefieldcomponentsarewhere10AndallthefieldcomponentsaThecutoffofaparticularmodeistheconditionthatmakesvanish.FortheTMmnmodethecutofffrequencyisAlternatively,wemaywriteWherecisthecutoffwavelength.

11Thecutoffofaparticularmod

1,電磁波的相位僅與變量z有關,而振幅與x,y有關。因此,在Z方向上為行波,在X及Y

方向上形成駐波。

2,z

等于常數(shù)的平面為波面。但振輻與x,y有關,因此上述TM波為非均勻的平面波;

3,當m

或n

為零時,上述各個分量均為零,因此m及n

應為非零的整數(shù)。m及n具有明顯的物理意義,m為寬壁上的半個駐波的數(shù)目,n為窄壁上半個駐波的數(shù)目。

4,由于m及n為多值,因此場結構均具有多種模式。m及n的每一種組合構成一種模式,以TMmn表示。例如TM11表示m=1,n=1的場結構,具有這種場結構的波稱為TM11波。5,數(shù)值大的m及n模式稱為高次模,數(shù)值小的稱為低次模。由于m及n均不為零,故矩形波導中TM波的最低模式是TM11波。121,電磁波的相位僅與變量z有關,而振幅與

Selecttherectangularcoordinatesystemandletthebroadsidebeplacedalongthe

x-axis,thenarrowsidealongthe

y-axis,andthepropagatingdirectionbealongthez-axis.azyxb,ForTEwaves,Ez=0

,andaccordingtothe

methodoflongitudinalfields,thecomponent

Hz

should

first

besolved,andfromwhichtheothercomponentscanbederived.

The

z-componentofthemagneticfieldintensitycanbewrittenas1.2TEwaves13SelecttherectangularItsatisfiesthefollowingscalarHelmholtzequation,i.e.Inordertosolvetheaboveequation,themethodof

separationofvariables

isused.LetWeobtainwhereX"

denotes

thesecond

derivativeof

X

withrespectto

x,and

Y"

denotes

thesecond

derivativeof

Y

withrespectto

y.14Itsatisfiesthefollowingsca

Similarly,wecanderiveallthecomponentsofa

TEwave

intherectangularwaveguide,asgivenbywhere,butbothshouldnotbezero

atthesametime.Boundaryconditions:15Similarly,wecanderivThecutoffofaparticularmodeistheconditionthatmakes

vanish.FortheTEmnmodethecutofffrequencyisAltermatively,wemaywriteWherecisthecutoffwavelength.

TEwavehasthe

multi-mode

characteristicsasthe

TM

wave.

The

lowest

ordermodeofTEwaveisthe

TE01

orTE10

wave.16ThecutoffofaparticularmodExample.Theinsideofarectangularmetalwaveguideisvacuum,andthecross-sectionis

25mm10mm.Whatmodes

canbetransmittedifanelectromagneticwaveoffrequencyentersthewaveguide?Willthemodesbechangedifthewaveguideisfilledwithaperfect

dielectric

ofrelativepermittivity?

Solution:

Duetotheinsideisvacuum,theoperatingwavelengthis

andthecutoffwavelengthis

Thenthecutoffwavelengthof

TE10

waveis,thatof

TE20

waveis,andthatof

TE01

waveis.Thecutoffwavelengthofthehighermodeswillbeevenshorter.Inviewofthis,only

TE10

wavecanbetransmittedinthiswaveguide.17Example.Theinsideof

Ifthewaveguideisfilledwitha

perfectdielectric

of,thentheoperatingwavelengthisHence,

TE10

and

TE20

wavescanbetransmitted,andsomeothermodes

TE01,TE30,TE11,TM11,TE21,TM21

canexist.18Ifthewaveguideisfill1.3TE10WaveinRectangularWaveguides

Let,wefindThecorresponding

instantaneous

valuesareAnd.191.3TE10WaveinRectangularLet

m=1,n=0,wefindthecutoffwavelengthof

TE10

modeas

Itmeansthatthecutoffwavelengthofthe

TE10

waveisindependentofthe

narrow

side.The

phasevelocity

andthe

guidewavelength

canbefoundasthe

energyvelocity

as20Letm=1,n=0,wefindth

Example.

Arectangularwave-guideisfilledwithdielectric(perfect)medium(r=1,r=9),.andoperatesatafrequency3GHz.Ifthedimensionsofthewave-guideis

a=2cmandb=1cmSolution:Showthatthecanpropagateatthisfrequency

m/s

Sothecanpropagateatthisfrequencyinthewaveguide.21Example.Arectangularwave-g(2)Determinephaseconstant:

rad/m

(3)Determinewaveimpedance22(2)Determinephaseconstant:r(4)Determinethephasevelocity(5)Determinethegroupvelocity23(4)Determinethephaseveloci1.RectangularWaveguides

themethodof

separationofvariablesazyxb,the

method

oflongitudinalfieldssummary241.RectangularWaveguidestheTMwaveTEwave25TMwaveTEwave252626homework10-14;10-16;10-18Thankyou!Bye-bye!答疑安排時間:地點:27homework10-14;10-16;10-18ThanElectromagneticFieldandWave電磁場與電磁波2011.5.2128ElectromagneticFieldandWaveReview1.GeneralWaveBehaviorsalongUniformGuidingStructures29Review1.GeneralWaveBehavior303Maintopic1.RectangularWaveguides

31Maintopic1.RectangularWaveg1.RectangularWaveguides

Selecttherectangularcoordinatesystemandletthebroadsidebeplacedalongthe

x-axis,thenarrowsidealongthe

y-axis,andthepropagatingdirectionbealongthez-axis.azyxb,ForTMwaves,Hz=0

,andaccordingtothe

methodoflongitudinalfields,thecomponent

Ez

should

first

besolved,andfromwhichtheothercomponentscanbederived.

The

z-componentoftheelectricfieldintensitycanbewrittenas1.1TMwaves321.RectangularWaveguidesItsatisfiesthefollowingscalarHelmholtzequation,i.e.Inordertosolvetheaboveequation,themethodof

separationofvariables

isused.LetWeobtainwhereX"

denotes

thesecond

derivativeof

X

withrespectto

x,and

Y"

denotes

thesecond

derivativeof

Y

withrespectto

y.33ItsatisfiesthefollowingscaThe

onlyway

theequationcanbesatisfiedisthatbothtermsontheleftsideare

constants.

Nowlet

wherekx

and

ky

arecalledthe

separationconstants,andtheycanbefoundbyusingtheboundaryconditions.Obviously34Theonlywaytheequationcanwherealltheconstants

C1,C2,C3,C4,and

kx,ky,dependontheboundaryconditions.Thetwoequationsaresecondorderordinarydifferentialequations,andthegeneralsolutions,arerespectively

The

z-componentoftheelectricfieldintensitycanbewrittenasBoundaryconditions:azyxb,35wherealltheconstantsC1,C369Andallthefieldcomponentsarewhere37AndallthefieldcomponentsaThecutoffofaparticularmodeistheconditionthatmakesvanish.FortheTMmnmodethecutofffrequencyisAlternatively,wemaywriteWherecisthecutoffwavelength.

38Thecutoffofaparticularmod

1,電磁波的相位僅與變量z有關,而振幅與x,y有關。因此,在Z方向上為行波,在X及Y

方向上形成駐波。

2,z

等于常數(shù)的平面為波面。但振輻與x,y有關,因此上述TM波為非均勻的平面波;

3,當m

或n

為零時,上述各個分量均為零,因此m及n

應為非零的整數(shù)。m及n具有明顯的物理意義,m為寬壁上的半個駐波的數(shù)目,n為窄壁上半個駐波的數(shù)目。

4,由于m及n為多值,因此場結構均具有多種模式。m及n的每一種組合構成一種模式,以TMmn表示。例如TM11表示m=1,n=1的場結構,具有這種場結構的波稱為TM11波。5,數(shù)值大的m及n模式稱為高次模,數(shù)值小的稱為低次模。由于m及n均不為零,故矩形波導中TM波的最低模式是TM11波。391,電磁波的相位僅與變量z有關,而振幅與

Selecttherectangularcoordinatesystemandletthebroadsidebeplacedalongthe

x-axis,thenarrowsidealongthe

y-axis,andthepropagatingdirectionbealongthez-axis.azyxb,ForTEwaves,Ez=0

,andaccordingtothe

methodoflongitudinalfields,thecomponent

Hz

should

first

besolved,andfromwhichtheothercomponentscanbederived.

The

z-componentofthemagneticfieldintensitycanbewrittenas1.2TEwaves40SelecttherectangularItsatisfiesthefollowingscalarHelmholtzequation,i.e.Inordertosolvetheaboveequation,themethodof

separationofvariables

isused.LetWeobtainwhereX"

denotes

thesecond

derivativeof

X

withrespectto

x,and

Y"

denotes

thesecond

derivativeof

Y

withrespectto

y.41Itsatisfiesthefollowingsca

Similarly,wecanderiveallthecomponentsofa

TEwave

intherectangularwaveguide,asgivenbywhere,butbothshouldnotbezero

atthesametime.Boundaryconditions:42Similarly,wecanderivThecutoffofaparticularmodeistheconditionthatmakes

vanish.FortheTEmnmodethecutofffrequencyisAltermatively,wemaywriteWherecisthecutoffwavelength.

TEwavehasthe

multi-mode

characteristicsasthe

TM

wave.

The

lowest

ordermodeofTEwaveisthe

TE01

orTE10

wave.43ThecutoffofaparticularmodExample.Theinsideofarectangularmetalwaveguideisvacuum,andthecross-sectionis

25mm10mm.Whatmodes

canbetransmittedifanelectromagneticwaveoffrequencyentersthewaveguide?Willthemodesbechangedifthewaveguideisfilledwithaperfect

dielectric

ofrelativepermittivity?

Solution:

Duetotheinsideisvacuum,theoperatingwavelengthis

andthecutoffwavelengthis

Thenthecutoffwavelengthof

TE10

waveis,thatof

TE20

waveis,andthatof

TE01

waveis.Thecutoffwavelengthofthehighermodeswillbeevenshorter.Inviewofthis,only

TE10

wavecanbetransmittedinthiswaveguide.44Example.Theinsideof

Ifthewaveguideisfilledwitha

perfectdielectric

of,thentheoperatingwavelengthisHence,

TE10

and

TE20

wavescanbetransmitted,andsomeothermodes

TE01,TE30,TE11,TM11,TE21,TM21

canexist.45Ifthewaveguideisfill1.3TE10WaveinRectangularWaveguides

Let

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論