2022-2023學年天津市河西區(qū)達標名校數(shù)學高一上期末綜合測試模擬試題含解析_第1頁
2022-2023學年天津市河西區(qū)達標名校數(shù)學高一上期末綜合測試模擬試題含解析_第2頁
2022-2023學年天津市河西區(qū)達標名校數(shù)學高一上期末綜合測試模擬試題含解析_第3頁
2022-2023學年天津市河西區(qū)達標名校數(shù)學高一上期末綜合測試模擬試題含解析_第4頁
2022-2023學年天津市河西區(qū)達標名校數(shù)學高一上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.若:,則成立的一個充分不必要條件是()A. B.C. D.2.已知直線與直線平行,則的值為A.1 B.3C.-1或3 D.-1或13.已知函數(shù)f(x)=|lnx|-1,g(x)=-x2+2x+3,用min{m,n}表示m,n中的最小值.設函數(shù)h(x)=min{f(x),g(x)},則函數(shù)h(x)的零點個數(shù)為()A.1 B.2C.3 D.44.已知集合,,若,則A. B.C. D.5.設集合,3,,則正確的是A.3, B.3,C. D.6.我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如.在不超過20的素數(shù)中,隨機選取2個不同的數(shù),其和等于20的概率是()【注:如果一個大于1的整數(shù)除了1和自身外無其它正因數(shù),則稱這個整數(shù)為素數(shù).】A. B.C. D.7.設,,,則有()A. B.C. D.8.設命題:,則的否定為()A. B.C. D.9.已知則當最小時的值時A.﹣3 B.3C.﹣1 D.110.已知角的終邊與單位圓的交點為,則()A. B.C. D.11.如圖所示,將等腰直角△ABC沿斜邊BC上的高AD折成一個二面角,使得∠B′AC=60°.那么這個二面角大小是()A.30° B.60°C.90° D.120°12.的弧度數(shù)是()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.已知函數(shù)的圖象恒過定點,若點也在函數(shù)的圖象上,則_________14.函數(shù)的最小值為__________15.已知一個扇形的面積為,半徑為,則其圓心角為___________.16.各條棱長均相等的四面體相鄰兩個面所成角的余弦值為___________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.設函數(shù).(1)當時,求函數(shù)的零點;(2)當時,判斷的奇偶性并給予證明;(3)當時,恒成立,求m的最大值.18.定義在上奇函數(shù),已知當時,求實數(shù)a的值;求在上的解析式;若存在時,使不等式成立,求實數(shù)m的取值范圍19.某校高一(1)班共有學生50人,據(jù)統(tǒng)計原來每人每年用于購買飲料的平均支出是元,經(jīng)測算和市場調(diào)查,若該班學生集體改飲某品牌的桶裝純凈水,則年總費用由兩部分組成:一部分是購買純凈水的費用,另一部分是其他費用780元,其中純凈水的銷售價(元/桶)與年購買總量(桶)之間滿足如圖所示的關系.(Ⅰ)求與的函數(shù)關系;(Ⅱ)當為120時,若該班每年需要純凈水380桶,請你根據(jù)提供的信息分析一下:該班學生集體改飲桶裝純凈水與個人買飲料相比,哪一種花錢更少?20.已知,函數(shù).(Ⅰ)當時,解不等式;(Ⅱ)若關于的方程的解集中恰有一個元素,求的取值范圍;(Ⅲ)設,若對任意,函數(shù)在區(qū)間上的最大值與最小值的和不大于,求的取值范圍.21.觀察下列各等式:,,.(1)請選擇其中的一個式子,求出a的值;(2)分析上述各式的特點,寫出能反映一般規(guī)律的等式,并進行證明.22.計算題

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、C【解析】根據(jù)不等式的解法求得不等式的解集,結合充分條件、必要條件的判定方法,即可求解.【詳解】由題意,不等式,可得,解得,結合選項,不等式的一個充分不必要條件是.故選:C.2、A【解析】因為兩條直線平行,所以:解得m=1故選A.點睛:本題主要考查直線的方程,兩條直線平行與斜率的關系,屬于簡單題.對直線位置關系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關系:在斜率存在的前提下,(1),需檢驗不重合;(2),這類問題盡管簡單卻容易出錯,特別是容易遺忘斜率不存在的情況,這一點一定不能掉以輕心.3、C【解析】畫圖可知四個零點分別為-1和3,和e,但注意到f(x)的定義域為x>0,故選C.4、A【解析】利用兩個集合的交集所包含的元素,求得的值,進而求得.【詳解】由于,故,所以,故,故選A.【點睛】本小題主要考查兩個集合交集元素的特征,考查兩個集合的并集的概念,屬于基礎題.5、D【解析】根據(jù)集合的定義與運算法則,對選項中的結論判斷正誤即可【詳解】解:集合,3,,則,選項A錯誤;2,3,,選項B錯誤;,選項C錯誤;,選項D正確故選D【點睛】本題考查了集合的定義與運算問題,屬于基礎題6、A【解析】隨機選取兩個不同的數(shù)共有種,而其和等于20有2種,由此能求出隨機選取兩個不同的數(shù),其和等于20的概率【詳解】在不超過20的素數(shù)中有2,3,5,7,11,13,17,19共8個,隨機選取兩個不同的數(shù)共有種,隨機選取兩個不同的數(shù),其和等于20有2種,分別為(3,17)和(7,13),故可得隨機選取兩個不同的數(shù),其和等于20的概率,故選:7、C【解析】利用和差公式,二倍角公式等化簡,再利用正弦函數(shù)的單調(diào)性比較大小.【詳解】,,,因為函數(shù)在上是增函數(shù),,所以由三角函數(shù)線知:,,因為,所以,所以故選:C.8、B【解析】本題根據(jù)題意直接寫出命題的否定即可.【詳解】解:因為命題:,所以的否定:,故選:B【點睛】本題考查含有一個量詞的命題的否定,是基礎題.9、B【解析】由題目已知可得:當時,的值最小故選10、A【解析】利用三角函數(shù)的定義得出和的值,由此可計算出的值.【詳解】由三角函數(shù)的定義得,,因此,.故選:A.【點睛】本題考查三角函數(shù)的定義,考查計算能力,屬于基礎題.11、C【解析】根據(jù)折的過程中不變的角的大小、結合二面角的定義進行判斷即可.【詳解】因為AD是等腰直角△ABC斜邊BC上的高,所以,因此是二面角的平面角,∠B′AC=60°.所以是等邊三角形,因此,在中.故選:C【點睛】本題考查了二面角的判斷,考查了數(shù)學運算能力,屬于基礎題.12、C【解析】弧度,弧度,則弧度弧度,故選C.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】根據(jù)對數(shù)過定點可求得,代入構造方程可求得結果.【詳解】,,,解得:.故答案為:.14、【解析】所以,當,即時,取得最小值.所以答案應填:.考點:1、對數(shù)的運算;2、二次函數(shù)的最值.15、【解析】結合扇形的面積公式即可求出圓心角的大小.【詳解】解:設圓心角為,半徑為,則,由題意知,,解得,故答案為:16、【解析】首先利用圖像作出相鄰兩個面所成角,然后利用已知條件求出正四面體相鄰兩個面所成角的兩邊即可求解.【詳解】由題意,四面體為正三棱錐,不妨設正三棱錐的邊長為,過作平面,垂足為,取的中點,并連接、、、,如下圖:由正四面體的性質(zhì)可知,為底面正三角形的中心,從而,,∵為的中點,為正三角形,所以,,所以為正四面體相鄰兩個面所成角∵,∴易得,,∵平面,平面,∴,故.故答案為:.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)﹣3和1(2)奇函數(shù),證明見解析(3)3【解析】(1)令求解;(2)由(1)得到,再利用奇偶性的定義判斷;(3)將時,恒成立,轉化為,在上恒成立求解.【小問1詳解】解:當時,由,解得或,∴函數(shù)的零點為﹣3和1;【小問2詳解】由(1)知,則,由,解得,故的定義域關于原點對稱,又,,∴,∴是上的奇函數(shù).【小問3詳解】∵,且當時,恒成立,即,在上恒成立,∴,在上恒成立,令,易知在上單調(diào)遞增∴,∴,故m的最大值為3.18、(1);(2);(3).【解析】根據(jù)題意,由函數(shù)奇偶性的性質(zhì)可得,解可得的值,驗證即可得答案;當時,,求出的解析式,結合函數(shù)的奇偶性分析可得答案;根據(jù)題意,若存在,使得成立,即在有解,變形可得在有解設,分析的單調(diào)性可得的最大值,從而可得結果【詳解】根據(jù)題意,是定義在上的奇函數(shù),則,得經(jīng)檢驗滿足題意;故;根據(jù)題意,當時,,當時,,又是奇函數(shù),則綜上,當時,;根據(jù)題意,若存在,使得成立,即在有解,即在有解又由,則在有解設,分析可得上單調(diào)遞減,又由時,,故即實數(shù)m的取值范圍是【點睛】本題考查函數(shù)的奇偶性的應用,以及指數(shù)函數(shù)單調(diào)性的應用,屬于綜合題19、(Ⅰ);(Ⅱ)該班學生集體改飲桶裝純凈水花錢更少.【解析】(Ⅰ)根據(jù)題意設出直線方程,再代入圖示數(shù)據(jù),即可得出與的函數(shù)關系;(Ⅱ)分別求出兩種情形下的年花費費用,進行比較即可.【詳解】(Ⅰ)根據(jù)題意,可設,時,;時,,,解得,所以與的函數(shù)關系為:;(Ⅱ)該班學生購買飲料的年費用為(元),由(Ⅰ)知,當時,,故該班學生購買純凈水的年費用為:(元),比購買飲料花費少,故該班學生集體改飲桶裝純凈水花錢更少.【點睛】本題考查函數(shù)模型的選取及實際應用,屬于簡單題.20、(Ⅰ);(Ⅱ);(Ⅲ).【解析】(Ⅰ)當時,利用對數(shù)函數(shù)的單調(diào)性,直接解不等式即可;(Ⅱ)化簡關于的方程,通過分離變量推出的表達式,通過解集中恰有一個元素,利用二次函數(shù)的性質(zhì),即可求的取值范圍;(Ⅲ)在上單調(diào)遞減利用復合函數(shù)的單調(diào)性求解函數(shù)的最值,令,化簡不等式,轉化求解不等式的最大值,然后推出的范圍.【詳解】(Ⅰ)當時,,∴,整理得,解得.所以原不等式的解集為.(Ⅱ)方程,即為,∴,∴,令,則,由題意得方程在上只有一解,令,,轉化為函數(shù)與的圖象在上只有一個交點.則分別作出函數(shù)與的圖象,如圖所示結合圖象可得,當或時,直線y=a和的圖象只有一個公共點,即方程只有一個解所以實數(shù)范圍為.(Ⅲ)因為函數(shù)在上單調(diào)遞減,所以函數(shù)定義域內(nèi)單調(diào)遞減,所以函數(shù)在區(qū)間上的最大值為,最小值為,所以由題意得,所以恒成立,令,所以恒成立,因為在上單調(diào)遞增,所以∴,解得,又,∴所以實數(shù)的取值范圍是.【點睛】解答此類題時注意以下幾點:(1)對于復合函數(shù)的單調(diào)性,可根據(jù)“同增異減”的方法進行判斷;(2)已知方程根的個數(shù)(函數(shù)零點的個數(shù))求參數(shù)范圍時,可通過解方程的方法求解,對于無法解方程的,可通過分離、構造函數(shù)的方法轉化為函數(shù)圖象公共點個數(shù)的問題處理(3)解不等式的恒成立問題時,通常采取分離參數(shù)的方法,將問題轉化為求函數(shù)的最值的問題21、(1)(2)證明見詳解【解析】(1)利用第三個式子,結合特殊角的三角函數(shù)值代入計算即可;(2)用兩角和正弦公式展開,代入化簡,結合,即得解【小問1詳解】由題意,【小問2詳解】根據(jù)題干中各個式子的特點,猜想等式:證明:左邊即得證22、2【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論