人工智能的課件CH14Bayesiannetworkpart1_第1頁
人工智能的課件CH14Bayesiannetworkpart1_第2頁
人工智能的課件CH14Bayesiannetworkpart1_第3頁
人工智能的課件CH14Bayesiannetworkpart1_第4頁
人工智能的課件CH14Bayesiannetworkpart1_第5頁
已閱讀5頁,還剩51頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

XIV.Bayesiannetworks

(section1-3)Autumn2012Instructor:WangXiaolongHarbinInstituteofTechnology,ShenzhenGraduateSchoolIntelligentComputationResearchCenter(HITSGSICRC)XIV.Bayesiannetworks

(sectioOutlinesSyntaxSemanticsParameterizeddistributionsOutlinesSyntaxBayesiannetworksAsimple,graphicalnotationforconditionalindependenceassertionsandhenceforcompactspecificationoffulljointdistributionsSyntax:asetofnodes,onepervariableadirected,acyclicgraph(link≈"directlyinfluences")aconditionaldistributionforeachnodegivenitsparents:P(Xi|Parents(Xi))Inthesimplestcase,conditionaldistributionrepresentedasaconditionalprobabilitytable(CPT)givingthedistributionoverXiforeachcombinationofparentvaluesBayesiannetworksAsimple,graExampleTopologyofnetworkencodesconditionalindependenceassertions:WeatherisindependentoftheothervariablesToothacheandCatchareconditionallyindependentgivenCavityExampleTopologyofnetworkencExampleI'matwork,neighborJohncallstosaymyalarmisringing,butneighborMarydoesn'tcall.Sometimesit'ssetoffbyminorearthquakes.Isthereaburglar?Variables:Burglary,Earthquake,Alarm,JohnCalls,MaryCallsNetworktopologyreflects"causal"knowledge:AburglarcansetthealarmoffAnearthquakecansetthealarmoffThealarmcancauseMarytocallThealarmcancauseJohntocallExampleI'matwork,neighborJExamplecontd.Examplecontd.CompactnessACPTforBooleanXiwithkBooleanparentshas2krowsforthecombinationsofparentvaluesEachrowrequiresonenumberpforXi=true

(thenumberforXi=falseisjust1-p)Ifeachvariablehasnomorethankparents,thecompletenetworkrequiresO(n·2k)numbersI.e.,growslinearlywithn,vs.O(2n)

forthefulljointdistributionForburglarynet,1+1+4+2+2=10numbers(vs.25-1=31)CompactnessACPTforBooleanXSemanticsThesemanticsofBayesiannetworks:Arepresentationofthejointprobabilitydistribution. (Numericalsemantics)Anencodingofacollectionofconditionalindependencestatements. (Topologicalsemantics)SemanticsThesemanticsofBayeNumericalsemanticsThefulljointdistributionisdefinedastheproductofthelocalconditionaldistributions:NumericalsemanticsThefulljoNumericalsemanticsThefulljointdistributionisdefinedastheproductofthelocalconditionaldistributions:NumericalsemanticsThefulljoTopologicalsemanticsTopologicalsemantics:Eachnodeisconditionallyindependentofitsnon-descendantsgivenitsparentsTopologicalsemanticsTopologicMarkovblanketEachnodeisconditionallyindependentofallothersgivenitsMarkovblanket:parents+children+children'sparentsTheorem:TopologicalsemanticsNumericalsemanticsMarkovblanketEachnodeisconConstructingBayesiannetworks 1.ChooseanorderingofvariablesX1,…,Xn 2.Fori=1tonaddXitothenetworkselectparentsfromX1,…,Xi-1suchthat

P(Xi|Parents(Xi))=P(Xi|X1,...Xi-1)Thischoiceofparentsguarantees:P(X1,…,Xn)=πi=1

P(Xi|X1,…,Xi-1)(chainrule)

=πi=1P(Xi|Parents(Xi))(byconstruction)nnConstructingBayesiannetworksExampleSupposewechoosetheorderingM,J,A,B,EP(J|M)=P(J)?ExampleSupposewechoosetheoExampleSupposewechoosetheorderingM,J,A,B,EP(J|M)=P(J)?NoP(A|J,M)=P(A|J)?

P(A|J,M)=P(A)?ExampleSupposewechoosetheoExampleSupposewechoosetheorderingM,J,A,B,EP(J|M)=P(J)?NoP(A|J,M)=P(A|J)?

P(A|J,M)=P(A)?NoP(B|A,J,M)=P(B|A)?P(B|A,J,M)=P(B)?ExampleSupposewechoosetheoExampleSupposewechoosetheorderingM,J,A,B,EP(J|M)=P(J)?NoP(A|J,M)=P(A|J)?

P(A|J,M)=P(A)?NoP(B|A,J,M)=P(B|A)?YesP(B|A,J,M)=P(B)?NoP(E|B,A,J,M)=P(E|A)?P(E|B,A,J,M)=P(E|A,B)?ExampleSupposewechoosetheoExampleSupposewechoosetheorderingM,J,A,B,EP(J|M)=P(J)?No

P(A|J,M)=P(A|J)?

P(A|J,M)=P(A)?NoP(B|A,J,M)=P(B|A)?YesP(B|A,J,M)=P(B)?NoP(E|B,A,J,M)=P(E|A)?NoP(E|B,A,J,M)=P(E|A,B)?YesExampleSupposewechoosetheoExamplecontd.Decidingconditionalindependenceishardinnoncausaldirections(Causalmodelsandconditionalindependenceseemhardwiredforhumans!)Networkislesscompact:1+2+4+2+4=13numbersneededExamplecontd.CompactconditionaldistributionsCPTgrowsexponentiallywithnumberofparents(O(2k))CPTbecomesinfinitewithcontinuous-valuedparentorchildSolution:canonicaldistributionsthataredefinedcompactlyDeterministicnodesarethesimplestcase:CompactconditionaldistributiCompactconditionaldistributionscontd.Noisy-ORdistributionsmodelmultiplenoninteractingcauses

1)ParentsU1…Ukincludeallcauses(canaddleaknode) 2)Independentfailureprobabilityqiforeachcausealone Numberofparameterslinearinnumberofparents(O(k))CompactconditionaldistributiHybrid(discrete+continuous)networksDiscrete(Subsidy?andBuys?);continuous(HarvestandCost)

Option1:discretization——possiblylargeerrors,largeCPTs Option2:finitelyparameterizedcanonicalfamilies 1)Continuousvariable,discrete+continuousparents(e.g.,Cost) 2)Discretevariable,continuousparents(e.g.,Buys?)Hybrid(discrete+continuous)nContinuouschildvariablesNeedoneconditionaldensityfunctionforchildvariablegivencontinuousparents,foreachpossibleassignmenttodiscreteparentsMostcommonisthelinearGaussianmodel,e.g.,:MeanCostvarieslinearlywithHarvest,varianceisfixedLinearvariationisunreasonableoverthefullrange, butworksOKifthelikelyrangeofHarvestisnarrowContinuouschildvariablesNeedContinuouschildvariablesAll-continuousnetworkwithLGdistributions fulljointdistributionisamultivariateGaussianDiscrete+continuousLGnetworkisaconditionalGaussiannetworki.e.,amultivariateGaussianoverallcontinuousvariablesforeachcombinationofdiscretevariablevaluesContinuouschildvariablesDiscretevariablewithcontinuousparentsProbabilityofBuysgivenCostshouldbea“soft”threshold:ProbitdistributionusesintegralofGaussian:DiscretevariablewithcontinuWhytheprobit?1.It'ssortoftherightshape2.CanviewashardthresholdwhoselocationissubjecttonoiseWhytheprobit?1.It'ssortofDiscretevariablecontd.Sigmoid(orlogit)distributionalsousedinneuralnetworks:Sigmoidhassimilarshapetoprobitbutmuchlongertails:Discretevariablecontd.SigmoiSummaryBayesiannetworksprovideanaturalrepresentationfor(causallyinduced)conditionalindependenceTopology+CPTs=compactrepresentationofjointdistributionGenerallyeasyfordomainexpertstoconstructCanonicaldistributions(e.g.,noisy-OR)=compactrepresentationofCPTsContinuousvariablesparameterizeddistributions(e.g.,linearGaussian)SummaryBayesiannetworksproviXIV.Bayesiannetworks

(section1-3)Autumn2012Instructor:WangXiaolongHarbinInstituteofTechnology,ShenzhenGraduateSchoolIntelligentComputationResearchCenter(HITSGSICRC)XIV.Bayesiannetworks

(sectioOutlinesSyntaxSemanticsParameterizeddistributionsOutlinesSyntaxBayesiannetworksAsimple,graphicalnotationforconditionalindependenceassertionsandhenceforcompactspecificationoffulljointdistributionsSyntax:asetofnodes,onepervariableadirected,acyclicgraph(link≈"directlyinfluences")aconditionaldistributionforeachnodegivenitsparents:P(Xi|Parents(Xi))Inthesimplestcase,conditionaldistributionrepresentedasaconditionalprobabilitytable(CPT)givingthedistributionoverXiforeachcombinationofparentvaluesBayesiannetworksAsimple,graExampleTopologyofnetworkencodesconditionalindependenceassertions:WeatherisindependentoftheothervariablesToothacheandCatchareconditionallyindependentgivenCavityExampleTopologyofnetworkencExampleI'matwork,neighborJohncallstosaymyalarmisringing,butneighborMarydoesn'tcall.Sometimesit'ssetoffbyminorearthquakes.Isthereaburglar?Variables:Burglary,Earthquake,Alarm,JohnCalls,MaryCallsNetworktopologyreflects"causal"knowledge:AburglarcansetthealarmoffAnearthquakecansetthealarmoffThealarmcancauseMarytocallThealarmcancauseJohntocallExampleI'matwork,neighborJExamplecontd.Examplecontd.CompactnessACPTforBooleanXiwithkBooleanparentshas2krowsforthecombinationsofparentvaluesEachrowrequiresonenumberpforXi=true

(thenumberforXi=falseisjust1-p)Ifeachvariablehasnomorethankparents,thecompletenetworkrequiresO(n·2k)numbersI.e.,growslinearlywithn,vs.O(2n)

forthefulljointdistributionForburglarynet,1+1+4+2+2=10numbers(vs.25-1=31)CompactnessACPTforBooleanXSemanticsThesemanticsofBayesiannetworks:Arepresentationofthejointprobabilitydistribution. (Numericalsemantics)Anencodingofacollectionofconditionalindependencestatements. (Topologicalsemantics)SemanticsThesemanticsofBayeNumericalsemanticsThefulljointdistributionisdefinedastheproductofthelocalconditionaldistributions:NumericalsemanticsThefulljoNumericalsemanticsThefulljointdistributionisdefinedastheproductofthelocalconditionaldistributions:NumericalsemanticsThefulljoTopologicalsemanticsTopologicalsemantics:Eachnodeisconditionallyindependentofitsnon-descendantsgivenitsparentsTopologicalsemanticsTopologicMarkovblanketEachnodeisconditionallyindependentofallothersgivenitsMarkovblanket:parents+children+children'sparentsTheorem:TopologicalsemanticsNumericalsemanticsMarkovblanketEachnodeisconConstructingBayesiannetworks 1.ChooseanorderingofvariablesX1,…,Xn 2.Fori=1tonaddXitothenetworkselectparentsfromX1,…,Xi-1suchthat

P(Xi|Parents(Xi))=P(Xi|X1,...Xi-1)Thischoiceofparentsguarantees:P(X1,…,Xn)=πi=1

P(Xi|X1,…,Xi-1)(chainrule)

=πi=1P(Xi|Parents(Xi))(byconstruction)nnConstructingBayesiannetworksExampleSupposewechoosetheorderingM,J,A,B,EP(J|M)=P(J)?ExampleSupposewechoosetheoExampleSupposewechoosetheorderingM,J,A,B,EP(J|M)=P(J)?NoP(A|J,M)=P(A|J)?

P(A|J,M)=P(A)?ExampleSupposewechoosetheoExampleSupposewechoosetheorderingM,J,A,B,EP(J|M)=P(J)?NoP(A|J,M)=P(A|J)?

P(A|J,M)=P(A)?NoP(B|A,J,M)=P(B|A)?P(B|A,J,M)=P(B)?ExampleSupposewechoosetheoExampleSupposewechoosetheorderingM,J,A,B,EP(J|M)=P(J)?NoP(A|J,M)=P(A|J)?

P(A|J,M)=P(A)?NoP(B|A,J,M)=P(B|A)?YesP(B|A,J,M)=P(B)?NoP(E|B,A,J,M)=P(E|A)?P(E|B,A,J,M)=P(E|A,B)?ExampleSupposewechoosetheoExampleSupposewechoosetheorderingM,J,A,B,EP(J|M)=P(J)?No

P(A|J,M)=P(A|J)?

P(A|J,M)=P(A)?NoP(B|A,J,M)=P(B|A)?YesP(B|A,J,M)=P(B)?NoP(E|B,A,J,M)=P(E|A)?NoP(E|B,A,J,M)=P(E|A,B)?YesExampleSupposewechoosetheoExamplecontd.Decidingconditionalindependenceishardinnoncausaldirections(Causalmodelsandconditionalindependenceseemhardwiredforhumans!)Networkislesscompact:1+2+4+2+4=13numbersneededExamplecontd.CompactconditionaldistributionsCPTgrowsexponentiallywithnumberofparents(O(2k))CPTbecomesinfinitewithcontinuous-valuedparentorchildSolution:canonicaldistributionsthataredefinedcompactlyDeterministicnodesarethesimplestcase:CompactconditionaldistributiCompactconditionaldistributionscontd.Noisy-ORdistributionsmodelmultiplenoninteractingcauses

1)ParentsU1…Ukincludeallcauses(canaddleaknode) 2)Independentfailureprobabilityqiforeachcausealone Numberofparameterslinearinnumberofparents(O(k))CompactconditionaldistributiHybrid(discrete+continuous)networksDiscrete(Subsidy?andBuys?);continuous(HarvestandCost)

Option1:discretization——possiblylargeerrors,largeCPTs Option2:finitelyparameterizedcanonicalfamilies 1)Continuousvariable,discrete+continuousparents(e.g.,Cost) 2)Discretevariable,continuousparents(e.g.,Buys?)Hybrid(discrete+continuous)nContinuouschildvariablesNeedoneconditionaldensityfunctionforchildvariablegivencontinuousparents,foreachpossibleassignmenttodiscreteparentsMostcommonis

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論