版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,若,則實(shí)數(shù)的取值范圍為()A. B. C. D.2.設(shè),則,則()A. B. C. D.3.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.4.已知是雙曲線的左、右焦點(diǎn),是的左、右頂點(diǎn),點(diǎn)在過且斜率為的直線上,為等腰三角形,,則的漸近線方程為()A. B. C. D.5.四人并排坐在連號(hào)的四個(gè)座位上,其中與不相鄰的所有不同的坐法種數(shù)是()A.12 B.16 C.20 D.86.已知等差數(shù)列中,,,則數(shù)列的前10項(xiàng)和()A.100 B.210 C.380 D.4007.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績,算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績,則輸出的,分別是()A., B.,C., D.,8.設(shè),是空間兩條不同的直線,,是空間兩個(gè)不同的平面,給出下列四個(gè)命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④9.已知圓錐的高為3,底面半徑為,若該圓錐的頂點(diǎn)與底面的圓周都在同一個(gè)球面上,則這個(gè)球的體積與圓錐的體積的比值為()A. B. C. D.10.設(shè)等比數(shù)列的前項(xiàng)和為,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.已知函數(shù),,若方程恰有三個(gè)不相等的實(shí)根,則的取值范圍為()A. B.C. D.12.《聊齋志異》中有這樣一首詩:“挑水砍柴不堪苦,請(qǐng)歸但求穿墻術(shù).得訣自詡無所阻,額上墳起終不悟.”在這里,我們稱形如以下形式的等式具有“穿墻術(shù)”:,,,,則按照以上規(guī)律,若具有“穿墻術(shù)”,則()A.48 B.63 C.99 D.120二、填空題:本題共4小題,每小題5分,共20分。13.從編號(hào)為,,,的張卡片中隨機(jī)抽取一張,放回后再隨機(jī)抽取一張,則第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字整除的概率為_____________.14.?dāng)?shù)列滿足遞推公式,且,則___________.15.如圖,在△ABC中,E為邊AC上一點(diǎn),且,P為BE上一點(diǎn),且滿足,則的最小值為______.16.李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價(jià)格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對(duì)這四種水果進(jìn)行促銷:一次購買水果的總價(jià)達(dá)到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會(huì)得到支付款的80%.①當(dāng)x=10時(shí),顧客一次購買草莓和西瓜各1盒,需要支付__________元;②在促銷活動(dòng)中,為保證李明每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)()的圖象在處的切線為(為自然對(duì)數(shù)的底數(shù))(1)求的值;(2)若,且對(duì)任意恒成立,求的最大值.18.(12分)已知數(shù)列,,數(shù)列滿足,n.(1)若,,求數(shù)列的前2n項(xiàng)和;(2)若數(shù)列為等差數(shù)列,且對(duì)任意n,恒成立.①當(dāng)數(shù)列為等差數(shù)列時(shí),求證:數(shù)列,的公差相等;②數(shù)列能否為等比數(shù)列?若能,請(qǐng)寫出所有滿足條件的數(shù)列;若不能,請(qǐng)說明理由.19.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)到平面距離最大時(shí),求三棱錐的體積.20.(12分)已知函數(shù)的最大值為,其中.(1)求實(shí)數(shù)的值;(2)若求證:.21.(12分)已知等差數(shù)列滿足,.(l)求等差數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)車工劉師傅利用數(shù)控車床為某公司加工一種高科技易損零件,對(duì)之前加工的100個(gè)零件的加工時(shí)間進(jìn)行統(tǒng)計(jì),結(jié)果如下:加工1個(gè)零件用時(shí)(分鐘)20253035頻數(shù)(個(gè))15304015以加工這100個(gè)零件用時(shí)的頻率代替概率.(1)求的分布列與數(shù)學(xué)期望;(2)劉師傅準(zhǔn)備給幾個(gè)徒弟做一個(gè)加工該零件的講座,用時(shí)40分鐘,另外他打算在講座前、講座后各加工1個(gè)該零件作示范.求劉師傅講座及加工2個(gè)零件作示范的總時(shí)間不超過100分鐘的概率.
2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【答案解析】
解一元二次不等式化簡集合的表示,求解函數(shù)的定義域化簡集合的表示,根據(jù)可以得到集合、之間的關(guān)系,結(jié)合數(shù)軸進(jìn)行求解即可.【題目詳解】,.因?yàn)椋杂?,因此?故選:A【答案點(diǎn)睛】本題考查了已知集合運(yùn)算的結(jié)果求參數(shù)取值范圍問題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學(xué)運(yùn)算能力.2.A【答案解析】
根據(jù)換底公式可得,再化簡,比較的大小,即得答案.【題目詳解】,,.,顯然.,即,,即.綜上,.故選:.【答案點(diǎn)睛】本題考查換底公式和對(duì)數(shù)的運(yùn)算,屬于中檔題.3.D【答案解析】
直接利用復(fù)數(shù)的模的求法的運(yùn)算法則求解即可.【題目詳解】(是虛數(shù)單位)可得解得本題正確選項(xiàng):【答案點(diǎn)睛】本題考查復(fù)數(shù)的模的運(yùn)算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計(jì)算能力.4.D【答案解析】
根據(jù)為等腰三角形,可求出點(diǎn)P的坐標(biāo),又由的斜率為可得出關(guān)系,即可求出漸近線斜率得解.【題目詳解】如圖,因?yàn)闉榈妊切?,,所以?,又,,解得,所以雙曲線的漸近線方程為,故選:D【答案點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于中檔題.5.A【答案解析】
先將除A,B以外的兩人先排,再將A,B在3個(gè)空位置里進(jìn)行插空,再相乘得答案.【題目詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個(gè)空位置里進(jìn)行插空,有種,所以共有種.故選:A【答案點(diǎn)睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎(chǔ)題.6.B【答案解析】
設(shè)公差為,由已知可得,進(jìn)而求出的通項(xiàng)公式,即可求解.【題目詳解】設(shè)公差為,,,,.故選:B.【答案點(diǎn)睛】本題考查等差數(shù)列的基本量計(jì)算以及前項(xiàng)和,屬于基礎(chǔ)題.7.B【答案解析】
試題分析:由程序框圖可知,框圖統(tǒng)計(jì)的是成績不小于80和成績不小于60且小于80的人數(shù),由莖葉圖可知,成績不小于80的有12個(gè),成績不小于60且小于80的有26個(gè),故,.考點(diǎn):程序框圖、莖葉圖.8.C【答案解析】
根據(jù)線面平行或垂直的有關(guān)定理逐一判斷即可.【題目詳解】解:①:、也可能相交或異面,故①錯(cuò)②:因?yàn)?,,所以或,因?yàn)椋?,故②?duì)③:或,故③錯(cuò)④:如圖因?yàn)?,,在?nèi)過點(diǎn)作直線的垂線,則直線,又因?yàn)椋O(shè)經(jīng)過和相交的平面與交于直線,則又,所以因?yàn)椋?,所以,所以,故④?duì).故選:C【答案點(diǎn)睛】考查線面平行或垂直的判斷,基礎(chǔ)題.9.B【答案解析】
計(jì)算求半徑為,再計(jì)算球體積和圓錐體積,計(jì)算得到答案.【題目詳解】如圖所示:設(shè)球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【答案點(diǎn)睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學(xué)生的計(jì)算能力和空間想象能力.10.C【答案解析】
根據(jù)等比數(shù)列的前項(xiàng)和公式,判斷出正確選項(xiàng).【題目詳解】由于數(shù)列是等比數(shù)列,所以,由于,所以,故“”是“”的充分必要條件.故選:C【答案點(diǎn)睛】本小題主要考查充分、必要條件的判斷,考查等比數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.11.B【答案解析】
由題意可將方程轉(zhuǎn)化為,令,,進(jìn)而將方程轉(zhuǎn)化為,即或,再利用的單調(diào)性與最值即可得到結(jié)論.【題目詳解】由題意知方程在上恰有三個(gè)不相等的實(shí)根,即,①.因?yàn)椋偈絻蛇呁?,?所以方程有三個(gè)不等的正實(shí)根.記,,則上述方程轉(zhuǎn)化為.即,所以或.因?yàn)?,?dāng)時(shí),,所以在,上單調(diào)遞增,且時(shí),.當(dāng)時(shí),,在上單調(diào)遞減,且時(shí),.所以當(dāng)時(shí),取最大值,當(dāng),有一根.所以恰有兩個(gè)不相等的實(shí)根,所以.故選:B.【答案點(diǎn)睛】本題考查了函數(shù)與方程的關(guān)系,考查函數(shù)的單調(diào)性與最值,轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.12.C【答案解析】
觀察規(guī)律得根號(hào)內(nèi)分母為分子的平方減1,從而求出n.【題目詳解】解:觀察各式發(fā)現(xiàn)規(guī)律,根號(hào)內(nèi)分母為分子的平方減1所以故選:C.【答案點(diǎn)睛】本題考查了歸納推理,發(fā)現(xiàn)總結(jié)各式規(guī)律是關(guān)鍵,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
基本事件總數(shù),第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字的基本事件有8個(gè),由此能求出概率.【題目詳解】解:從編號(hào)為,,,的張卡片中隨機(jī)抽取一張,放回后再隨機(jī)抽取一張,基本事件總數(shù),第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字的基本事件有8個(gè),分別為:,,,,,,,.所以第二次抽得的卡片上的數(shù)字能被第一次抽得的卡片上數(shù)字整除的概率為.故答案為.【答案點(diǎn)睛】本題考查概率的求法,考查古典概型、列舉法等基礎(chǔ)知識(shí),屬于基礎(chǔ)題.14.2020【答案解析】
可對(duì)左右兩端同乘以得,依次寫出,,,,累加可得,再由得,代入即可求解【題目詳解】左右兩端同乘以有,從而,,,,將以上式子累加得.由得.令,有.故答案為:2020【答案點(diǎn)睛】本題考查數(shù)列遞推式和累加法的應(yīng)用,屬于基礎(chǔ)題15.【答案解析】試題分析:根據(jù)題意有,因?yàn)槿c(diǎn)共線,所以有,從而有,所以的最小值是.考點(diǎn):向量的運(yùn)算,基本不等式.【方法點(diǎn)睛】該題考查的是有關(guān)應(yīng)用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關(guān)鍵步驟在于對(duì)題中條件的轉(zhuǎn)化,根據(jù)三點(diǎn)共線,結(jié)合向量的性質(zhì)可知,從而等價(jià)于已知兩個(gè)正數(shù)的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應(yīng)用基本不等式求得結(jié)果,最后再加,得出最后的答案.16.130.15.【答案解析】
由題意可得顧客需要支付的費(fèi)用,然后分類討論,將原問題轉(zhuǎn)化為不等式恒成立的問題可得的最大值.【題目詳解】(1),顧客一次購買草莓和西瓜各一盒,需要支付元.(2)設(shè)顧客一次購買水果的促銷前總價(jià)為元,元時(shí),李明得到的金額為,符合要求.元時(shí),有恒成立,即,即元.所以的最大值為.【答案點(diǎn)睛】本題主要考查不等式的概念與性質(zhì)?數(shù)學(xué)的應(yīng)用意識(shí)?數(shù)學(xué)式子變形與運(yùn)算求解能力,以實(shí)際生活為背景,創(chuàng)設(shè)問題情境,考查學(xué)生身邊的數(shù)學(xué),考查學(xué)生的數(shù)學(xué)建模素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)a=-1,b=1;(2)-1.【答案解析】(1)對(duì)求導(dǎo)得,根據(jù)函數(shù)的圖象在處的切線為,列出方程組,即可求出的值;(2)由(1)可得,根據(jù)對(duì)任意恒成立,等價(jià)于對(duì)任意恒成立,構(gòu)造,求出的單調(diào)性,由,,,,可得存在唯一的零點(diǎn),使得,利用單調(diào)性可求出,即可求出的最大值.(1),.由題意知.(2)由(1)知:,∴對(duì)任意恒成立對(duì)任意恒成立對(duì)任意恒成立.令,則.由于,所以在上單調(diào)遞增.又,,,,所以存在唯一的,使得,且當(dāng)時(shí),,時(shí),.即在單調(diào)遞減,在上單調(diào)遞增.所以.又,即,∴.∴.∵,∴.又因?yàn)閷?duì)任意恒成立,又,∴.點(diǎn)睛:利用導(dǎo)數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.18.(1)(2)①見解析②數(shù)列不能為等比數(shù)列,見解析【答案解析】
(1)根據(jù)數(shù)列通項(xiàng)公式的特點(diǎn),奇數(shù)項(xiàng)為等差數(shù)列,偶數(shù)項(xiàng)為等比數(shù)列,選用分組求和的方法進(jìn)行求解;(2)①設(shè)數(shù)列的公差為,數(shù)列的公差為,當(dāng)n為奇數(shù)時(shí),得出;當(dāng)n為偶數(shù)時(shí),得出,從而可證數(shù)列,的公差相等;②利用反證法,先假設(shè)可以為等比數(shù)列,結(jié)合題意得出矛盾,進(jìn)而得出數(shù)列不能為等比數(shù)列.【題目詳解】(1)因?yàn)?,,所以,且,由題意可知,數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,數(shù)列是首項(xiàng)和公比均為4的等比數(shù)列,所以;(2)①證明:設(shè)數(shù)列的公差為,數(shù)列的公差為,當(dāng)n為奇數(shù)時(shí),,若,則當(dāng)時(shí),,即,與題意不符,所以,當(dāng)n為偶數(shù)時(shí),,,若,則當(dāng)時(shí),,即,與題意不符,所以,綜上,,原命題得證;②假設(shè)可以為等比數(shù)列,設(shè)公比為q,因?yàn)椋?,所以,,因?yàn)楫?dāng)時(shí),,所以當(dāng)n為偶數(shù),且時(shí),,即當(dāng)n為偶數(shù),且時(shí),不成立,與題意矛盾,所以數(shù)列不能為等比數(shù)列.【答案點(diǎn)睛】本題主要考查數(shù)列的求和及數(shù)列的綜合,數(shù)列求和時(shí)一般是結(jié)合通項(xiàng)公式的特征選取合適的求和方法,數(shù)列綜合題要回歸基本量,充分挖掘題目已知信息,細(xì)思細(xì)算,本題綜合性較強(qiáng),難度較大,側(cè)重考查邏輯推理和數(shù)學(xué)運(yùn)算的核心素養(yǎng).19.(1)見解析(2)【答案解析】
(1)連接與交于,連接,證明即可得證線面平行;(2)首先證明平面(只要取中點(diǎn),可證平面,從而得,同理得),因此點(diǎn)到直線的距離即為點(diǎn)到平面的距離,由平面幾何知識(shí)易得最大值,然后可計(jì)算體積.【題目詳解】(1)證明:連接與交于,連接,因?yàn)槭橇庑?,所以為的中點(diǎn),又因?yàn)闉榈闹悬c(diǎn),所以,因?yàn)槠矫嫫矫?,所以平面.?)解:取中點(diǎn),連接,因?yàn)樗倪呅问橇庑危?,且,所以,又,所以平面,又平面,所以.同理可證:,又,所以平面,所以平面平面,又平面平面,所以點(diǎn)到直線的距離即為點(diǎn)到平面的距離,過作直線的垂線段,在所有垂線段中長度最大為,因?yàn)闉榈闹悬c(diǎn),故點(diǎn)到平面的最大距離為1,此時(shí),為的中點(diǎn),即,所以,所以.【答案點(diǎn)睛】本題考查證明線面平行,考查求棱錐的體積,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 兼職會(huì)計(jì)勞務(wù)合同模板(3篇)
- 頂崗支教實(shí)習(xí)總結(jié)(6篇)
- DB12-T 1082-2021 公務(wù)用車保險(xiǎn)與年審服務(wù)規(guī)范
- 2024年牛肉加工項(xiàng)目資金籌措計(jì)劃書代可行性研究報(bào)告
- 2024-2025學(xué)年湖南省長郡中學(xué)高三上學(xué)期月考試卷(二)地理試題及答案
- 上海市市轄區(qū)(2024年-2025年小學(xué)五年級(jí)語文)人教版摸底考試(下學(xué)期)試卷及答案
- 上海市縣(2024年-2025年小學(xué)五年級(jí)語文)人教版專題練習(xí)(下學(xué)期)試卷及答案
- 四年級(jí)數(shù)學(xué)(三位數(shù)乘兩位數(shù))計(jì)算題專項(xiàng)練習(xí)及答案
- 北師大二年級(jí)語文下冊(cè)教案
- 新課標(biāo)人教版九年級(jí)語文上冊(cè)教案全集
- 農(nóng)村“留守兒童”現(xiàn)狀調(diào)查及對(duì)策研究
- 建設(shè)用地報(bào)批服務(wù)投標(biāo)方案(技術(shù)方案)
- 財(cái)政學(xué):財(cái)政平衡與財(cái)政政策
- GJB438C模板-軟件開發(fā)計(jì)劃(已按標(biāo)準(zhǔn)公文格式校準(zhǔn))
- 《積極的心態(tài)-成功的一半》主題班會(huì)課件
- 測試1高斯DB數(shù)據(jù)庫題庫V1.0版本20201105題庫(329道)
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)(隱患排查表)
- 三、大數(shù)據(jù)存儲(chǔ)技術(shù)課件
- 《“要拿我當(dāng)一挺機(jī)關(guān)槍使用”-紀(jì)念白求恩同志》
- 浙江省初中名校發(fā)展共同體2023-2024學(xué)年八年級(jí)上學(xué)期期中數(shù)學(xué)試題【含答案解析】
- 精美工業(yè)快速門施工方案
評(píng)論
0/150
提交評(píng)論