




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
圖像局部特證及其匹配的詳細(xì)講解11、獲得的成功越大,就越令人高興。野心是使人勤奮的原因,節(jié)制使人枯萎。12、不問收獲,只問耕耘。如同種樹,先有根莖,再有枝葉,爾后花實(shí),好好勞動(dòng),不要想太多,那樣只會(huì)使人膽孝懶惰,因?yàn)椴粚?shí)踐,甚至不接觸社會(huì),難道你是野人。(名言網(wǎng))13、不怕,不悔(雖然只有四個(gè)字,但??闯P?。14、我在心里默默地為每一個(gè)人祝福。我愛自己,我用清潔與節(jié)制來珍惜我的身體,我用智慧和知識(shí)充實(shí)我的頭腦。15、這世上的一切都借希望而完成。農(nóng)夫不會(huì)播下一粒玉米,如果他不曾希望它長(zhǎng)成種籽;單身漢不會(huì)娶妻,如果他不曾希望有小孩;商人或手藝人不會(huì)工作,如果他不曾希望因此而有收益。--馬釘路德。圖像局部特證及其匹配的詳細(xì)講解圖像局部特證及其匹配的詳細(xì)講解11、獲得的成功越大,就越令人高興。野心是使人勤奮的原因,節(jié)制使人枯萎。12、不問收獲,只問耕耘。如同種樹,先有根莖,再有枝葉,爾后花實(shí),好好勞動(dòng),不要想太多,那樣只會(huì)使人膽孝懶惰,因?yàn)椴粚?shí)踐,甚至不接觸社會(huì),難道你是野人。(名言網(wǎng))13、不怕,不悔(雖然只有四個(gè)字,但??闯P隆?4、我在心里默默地為每一個(gè)人祝福。我愛自己,我用清潔與節(jié)制來珍惜我的身體,我用智慧和知識(shí)充實(shí)我的頭腦。15、這世上的一切都借希望而完成。農(nóng)夫不會(huì)播下一粒玉米,如果他不曾希望它長(zhǎng)成種籽;單身漢不會(huì)娶妻,如果他不曾希望有小孩;商人或手藝人不會(huì)工作,如果他不曾希望因此而有收益。--馬釘路德。MatchingwithInvariantFeaturesExample:BuildaPanoramaM.BrownandD.G.Lowe.RecognisingPanoramas.ICCV2003圖像局部特證及其匹配的詳細(xì)講解11、獲得的成功越大,就越令人1圖像局部特證及其匹配的詳細(xì)講解課件2圖像局部特證及其匹配的詳細(xì)講解課件3圖像局部特證及其匹配的詳細(xì)講解課件4圖像局部特證及其匹配的詳細(xì)講解課件5MatchingwithFeaturesDetectfeaturepointsinbothimagesFindcorrespondingpairsMatchingwithFeaturesDetectf6MatchingwithFeaturesDetectfeaturepointsinbothimagesFindcorrespondingpairsUsethesepairstoalignimagesMatchingwithFeaturesDetectf7MatchingwithFeaturesProblem1:Detectthesamepointindependentlyinbothimagesnochancetomatch!WeneedarepeatabledetectorMatchingwithFeaturesProblem8MatchingwithFeaturesProblem2:Foreachpointcorrectlyrecognizethecorrespondingone?WeneedareliableanddistinctivedescriptorMatchingwithFeaturesProblem9Moremotivation…Featurepointsareusedalsofor:Imagealignment(homography,fundamentalmatrix)3DreconstructionMotiontrackingObjectrecognitionIndexinganddatabaseretrievalRobotnavigation…otherMoremotivation…Featurepoin10ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector11Anintroductoryexample:HarriscornerdetectorC.Harris,M.Stephens.“ACombinedCornerandEdgeDetector”.1988Anintroductoryexample:Harris12TheBasicIdeaWeshouldeasilyrecognizethepointbylookingthroughasmallwindowShiftingawindowinany
directionshouldgivealargechangeinintensityTheBasicIdeaWeshouldeasily13HarrisDetector:BasicIdea“flat”region:
nochangeinalldirections“edge”:
nochangealongtheedgedirection“corner”:
significantchangeinalldirectionsHarrisDetector:BasicIdea“fl14ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector15HarrisDetector:MathematicsChangeofintensityfortheshift[u,v]:IntensityShiftedintensityWindowfunctionorWindowfunctionw(x,y)=Gaussian1inwindow,0outsideHarrisDetector:MathematicsCh16HarrisDetector:MathematicsForsmallshifts[u,v]wehaveabilinearapproximation:whereMisa22matrixcomputedfromimagederivatives:HarrisDetector:MathematicsFo17HarrisDetector:MathematicsIntensitychangeinshiftingwindow:eigenvalueanalysis1,2–eigenvaluesofMdirectionoftheslowestchangedirectionofthefastestchange(max)-1/2(min)-1/2EllipseE(u,v)=constHarrisDetector:MathematicsIn18HarrisDetector:Mathematics12“Corner”
1and2arelarge,
1~2;
Eincreasesinalldirections1and2aresmall;
Eisalmostconstantinalldirections“Edge”
1>>2“Edge”
2>>1“Flat”regionClassificationofimagepointsusingeigenvaluesofM:HarrisDetector:Mathematics119HarrisDetector:MathematicsMeasureofcornerresponse:(k–empiricalconstant,k=0.04-0.06)HarrisDetector:MathematicsMe20HarrisDetector:Mathematics12“Corner”“Edge”“Edge”“Flat”
RdependsonlyoneigenvaluesofM
Rislargeforacorner
Risnegativewithlargemagnitudeforanedge|R|issmallforaflatregionR>0R<0R<0|R|smallHarrisDetector:Mathematics121HarrisDetectorTheAlgorithm:FindpointswithlargecornerresponsefunctionR(R>threshold)TakethepointsoflocalmaximaofRHarrisDetectorTheAlgorithm:22HarrisDetector:WorkflowHarrisDetector:Workflow23HarrisDetector:WorkflowComputecornerresponseRHarrisDetector:WorkflowCompu24HarrisDetector:WorkflowFindpointswithlargecornerresponse:R>thresholdHarrisDetector:WorkflowFind25HarrisDetector:WorkflowTakeonlythepointsoflocalmaximaofRHarrisDetector:WorkflowTake26HarrisDetector:WorkflowHarrisDetector:Workflow27HarrisDetector:SummaryAverageintensitychangeindirection[u,v]canbeexpressedasabilinearform:
DescribeapointintermsofeigenvaluesofM:
measureofcornerresponse
Agood(corner)pointshouldhavealargeintensitychangeinalldirections,i.e.RshouldbelargepositiveHarrisDetector:SummaryAverag28ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector29HarrisDetector:SomePropertiesRotationinvarianceEllipserotatesbutitsshape(i.e.eigenvalues)remainsthesameCornerresponseRisinvarianttoimagerotationHarrisDetector:SomeProperti30HarrisDetector:SomePropertiesPartialinvariancetoaffineintensitychange
Onlyderivativesareused=>invariancetointensityshiftI
I
+
b
Intensityscale:Ia
IRx
(imagecoordinate)thresholdRx
(imagecoordinate)HarrisDetector:SomeProperti31HarrisDetector:SomePropertiesBut:non-invarianttoimagescale!AllpointswillbeclassifiedasedgesCorner!HarrisDetector:SomeProperti32HarrisDetector:SomePropertiesQualityofHarrisdetectorfordifferentscalechangesRepeatabilityrate:#correspondences
#possiblecorrespondencesC.Schmidet.al.“EvaluationofInterestPointDetectors”.IJCV2000HarrisDetector:SomeProperti33ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector34Wewantto:detectthesameinterestpointsregardlessofimagechangesWewantto:detectthesameint35ModelsofImageChangeGeometryRotationSimilarity(rotation+uniformscale)
Affine(scaledependentondirection)
validfor:orthographiccamera,locallyplanarobjectPhotometryAffineintensitychange(Ia
I+b)ModelsofImageChangeGeometry36ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector37RotationInvariantDetectionHarrisCornerDetectorC.Schmidet.al.“EvaluationofInterestPointDetectors”.IJCV2000RotationInvariantDetectionHa38ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector39ScaleInvariantDetectionConsiderregions(e.g.circles)ofdifferentsizesaroundapointRegionsofcorrespondingsizeswilllookthesameinbothimagesScaleInvariantDetectionConsi40ScaleInvariantDetectionTheproblem:howdowechoosecorrespondingcirclesindependentlyineachimage?ScaleInvariantDetectionThep41ScaleInvariantDetectionSolution:Designafunctionontheregion(circle),whichis“scaleinvariant”(thesameforcorrespondingregions,eveniftheyareatdifferentscales)
Example:averageintensity.Forcorrespondingregions(evenofdifferentsizes)itwillbethesame.scale=1/2Forapointinoneimage,wecanconsideritasafunctionofregionsize(circleradius)
fregionsizeImage1fregionsizeImage2ScaleInvariantDetectionSolut42ScaleInvariantDetectionCommonapproach:scale=1/2fregionsizeImage1fregionsizeImage2TakealocalmaximumofthisfunctionObservation:regionsize,forwhichthemaximumisachieved,shouldbeinvarianttoimagescale.s1s2Important:thisscaleinvariantregionsizeisfoundineachimageindependently!ScaleInvariantDetectionCommo43ScaleInvariantDetectionA“good”functionforscaledetection:
hasonestablesharppeakfregionsizebadfregionsizebadfregionsizeGood!Forusualimages:agoodfunctionwouldbeaonewhichrespondstocontrast(sharplocalintensitychange)ScaleInvariantDetectionA“go44ScaleInvariantDetectionFunctionsfordeterminingscaleKernels:whereGaussianNote:bothkernelsareinvarianttoscaleandrotation(Laplacian)(DifferenceofGaussians)ScaleInvariantDetectionFunct45ScaleInvariantDetectionComparetohumanvision:eye’sresponseShimonUllman,IntroductiontoComputerandHumanVisionCourse,Fall2003ScaleInvariantDetectionCompa46ScaleInvariantDetectorsHarris-Laplacian1
Findlocalmaximumof:Harriscornerdetectorinspace(imagecoordinates)Laplacianinscale1K.Mikolajczyk,C.Schmid.“IndexingBasedonScaleInvariantInterestPoints”.ICCV2001
2D.Lowe.“DistinctiveImageFeaturesfromScale-InvariantKeypoints”.AcceptedtoIJCV2004scalexyHarrisLaplacianSIFT(Lowe)2
Findlocalmaximumof:DifferenceofGaussiansinspaceandscalescalexyDoGDoGScaleInvariantDetectorsHarri47ScaleInvariantDetectorsK.Mikolajczyk,C.Schmid.“IndexingBasedonScaleInvariantInterestPoints”.ICCV2001Experimentalevaluationofdetectors
w.r.t.scalechangeRepeatabilityrate:#correspondences
#possiblecorrespondencesScaleInvariantDetectorsK.Mik48ScaleInvariantDetection:SummaryGiven:
twoimagesofthesamescenewithalargescaledifferencebetweenthemGoal:
findthesameinterestpointsindependentlyineachimageSolution:searchformaximaofsuitablefunctionsinscaleandinspace(overtheimage)Methods:Harris-Laplacian[Mikolajczyk,Schmid]:maximizeLaplacianoverscale,Harris’measureofcornerresponseovertheimageSIFT[Lowe]:maximizeDifferenceofGaussiansoverscaleandspaceScaleInvariantDetection:Sum49ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector50AffineInvariantDetectionAboveweconsidered:
Similaritytransform(rotation+uniformscale)Nowwegoonto:
Affinetransform(rotation+non-uniformscale)AffineInvariantDetectionAbov51AffineInvariantDetectionTakealocalintensityextremumasinitialpointGoalongeveryraystartingfromthispointandstopwhenextremumoffunctionfisreachedT.Tuytelaars,L.V.Gool.“WideBaselineStereoMatchingBasedonLocal,AffinelyInvariantRegions”.BMVC
2000.fpointsalongtherayWewillobtainapproximatelycorrespondingregionsRemark:wesearchforscaleineverydirectionAffineInvariantDetectionTake52AffineInvariantDetectionTheregionsfoundmaynotexactlycorrespond,soweapproximatethemwithellipsesGeometricMoments:Fact:momentsmpquniquelydeterminethefunctionfTakingftobethecharacteristicfunctionofaregion(1inside,0outside),momentsofordersupto2allowtoapproximatetheregionbyanellipseThisellipsewillhavethesamemomentsofordersupto2astheoriginalregionAffineInvariantDetectionThe53AffineInvariantDetectionCovariancematrixofregionpointsdefinesanellipse:(p=[x,y]Tisrelativetothecenterofmass)Ellipses,computedforcorrespondingregions,alsocorrespond!AffineInvariantDetectionCova54AffineInvariantDetectionAlgorithmsummary(detectionofaffineinvariantregion):StartfromalocalintensityextremumpointGoineverydirectionuntilthepointofextremumofsomefunctionfCurveconnectingthepointsistheregionboundaryComputegeometricmomentsofordersupto2forthisregionReplacetheregionwithellipseT.Tuytelaars,L.V.Gool.“WideBaselineStereoMatchingBasedonLocal,AffinelyInvariantRegions”.BMVC
2000.AffineInvariantDetectionAlgo55AffineInvariantDetectionMaximallyStableExtremalRegionsThresholdimageintensities:I>I0Extractconnectedcomponents
(“ExtremalRegions”)Findathresholdwhenanextremal
regionis“MaximallyStable”,
i.e.localminimumoftherelative
growthofitssquareApproximatearegionwith
anellipseJ.Mataset.al.“DistinguishedRegionsforWide-baselineStereo”.ResearchReportofCMP,2001.AffineInvariantDetectionMaxi56AffineInvariantDetection:SummaryUnderaffinetransformation,wedonotknowinadvanceshapesofthecorrespondingregionsEllipsegivenbygeometriccovariancematrixofaregionrobustlyapproximatesthisregionForcorrespondingregionsellipsesalsocorrespondMethods:Searchforextremumalongrays[Tuytelaars,VanGool]:MaximallyStableExtremalRegions[Mataset.al.]AffineInvariantDetection:S57ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector58PointDescriptorsWeknowhowtodetectpointsNextquestion:
Howtomatchthem??Pointdescriptorshouldbe:InvariantDistinctivePointDescriptorsWeknowhowt59ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector60DescriptorsInvarianttoRotationHarriscornerresponsemeasure:
dependsonlyontheeigenvaluesofthematrixMC.Harris,M.Stephens.“ACombinedCornerandEdgeDetector”.1988DescriptorsInvarianttoRotat61DescriptorsInvarianttoRotationImagemomentsinpolarcoordinatesJ.Mataset.al.“RotationalInvariantsforWide-baselineStereo”.ResearchReportofCMP,2003Rotationinpolarcoordinatesistranslationoftheangle:
+0Thistransformationchangesonlythephaseofthemoments,butnotitsmagnitudeRotationinvariantdescriptorconsistsofmagnitudesofmoments:Matchingisdonebycomparingvectors[|mkl|]k,lDescriptorsInvarianttoRotat62DescriptorsInvarianttoRotationFindlocalorientationDominantdirectionofgradientComputeimagederivativesrelativetothisorientation1K.Mikolajczyk,C.Schmid.“IndexingBasedonScaleInvariantInterestPoints”.ICCV2001
2D.Lowe.“DistinctiveImageFeaturesfromScale-InvariantKeypoints”.AcceptedtoIJCV2004DescriptorsInvarianttoRotat63ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector64DescriptorsInvarianttoScaleUsethescaledeterminedbydetectortocomputedescriptorinanormalizedframeForexample:momentsintegratedoveranadaptedwindowderivativesadaptedtoscale:sIxDescriptorsInvarianttoScale65ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector66AffineInvariantDescriptorsAffineinvariantcolormomentsF.Mindruet.al.“RecognizingColorPatternsIrrespectiveofViewpointandIllumination”.CVPR99DifferentcombinationsofthesemomentsarefullyaffineinvariantAlsoinvarianttoaffinetransformationofintensityIa
I+bAffineInvariantDescriptorsAf67AffineInvariantDescriptorsFindaffinenormalizedframeJ.Mataset.al.“RotationalInvariantsforWide-baselineStereo”.ResearchReportofCMP,2003AA1A2rotationComputerotationalinvariantdescriptorinthisnormalizedframeAffineInvariantDescriptorsFi68SIFT–ScaleInvariantFeatureTransform1Empiricallyfound2toshowverygoodperformance,invarianttoimagerotation,scale,intensitychange,andtomoderateaffinetransformations1D.Lowe.“DistinctiveImageFeaturesfromScale-InvariantKeypoints”.AcceptedtoIJCV2004
2K.Mikolajczyk,C.Schmid.“APerformanceEvaluationofLocalDescriptors”.CVPR2003Scale=2.5
Rotation=450SIFT–ScaleInvariantFeature69SIFT–ScaleInvariantFeatureTransformDescriptoroverview:Determinescale(bymaximizingDoGinscaleandinspace),
localorientationasthedominantgradientdirection.
Usethisscaleandorientationtomakeallfurthercomputationsinvarianttoscaleandrotation.Computegradientorientationhistogramsofseveralsmallwindows(128valuesforeachpoint)NormalizethedescriptortomakeitinvarianttointensitychangeD.Lowe.“DistinctiveImageFeaturesfromScale-InvariantKeypoints”.AcceptedtoIJCV2004SIFT–ScaleInvariantFeature70AffineInvariantTextureDescriptorSegmenttheimageintoregionsofdifferenttextures(byanon-invariantmethod)ComputematrixM(thesameasin
Harrisdetector)overtheseregions
ThismatrixdefinestheellipseF.Schaffalitzky,A.Zisserman.“ViewpointInvariantTextureMatchingandWideBaselineStereo”.ICCV2003RegionsdescribedbytheseellipsesareinvariantunderaffinetransformationsFindaffinenormalizedframeComputerotationinvariantdescriptorAffineInvariantTextureDescr71InvariancetoIntensityChangeDetectorsmostlyinvarianttoaffine(linear)changeinimageintensity,becausewearesearchingformaximaDescriptorsSomearebasedonderivatives=>invarianttointensityshiftSomearenormalizedtotolerateintensityscaleGenericmethod:pre-normalizeintensityofaregion(eliminateshiftandscale)InvariancetoIntensityChange72TalkResumeStable(repeatable)featurepointscanbedetectedregardlessofimagechangesScale:searchforcorrectscaleasmaximumofappropriatefunctionAffine:approximateregionswithellipses(thisoperationisaffineinvariant)InvariantanddistinctivedescriptorscanbecomputedInvariantmomentsNormalizingwithrespecttoscaleandaffinetransformationTalkResumeStable(repeatable)73HappyEnd!HappyEnd!74HarrisDetector:ScaleRmin=0Rmin=1500HarrisDetector:ScaleRmin=0R75
1、最靈繁的人也看不見自己的背脊。——非洲
2、最困難的事情就是認(rèn)識(shí)自己?!ED
3、有勇氣承擔(dān)命運(yùn)這才是英雄好漢?!谌?/p>
4、與肝膽人共事,無字句處讀書?!芏鱽?/p>
5、閱讀使人充實(shí),會(huì)談使人敏捷,寫作使人精確。——培根
1、最靈繁的人也看不見自己的背脊。——非洲
2、最困76圖像局部特證及其匹配的詳細(xì)講解11、獲得的成功越大,就越令人高興。野心是使人勤奮的原因,節(jié)制使人枯萎。12、不問收獲,只問耕耘。如同種樹,先有根莖,再有枝葉,爾后花實(shí),好好勞動(dòng),不要想太多,那樣只會(huì)使人膽孝懶惰,因?yàn)椴粚?shí)踐,甚至不接觸社會(huì),難道你是野人。(名言網(wǎng))13、不怕,不悔(雖然只有四個(gè)字,但常看常新。14、我在心里默默地為每一個(gè)人祝福。我愛自己,我用清潔與節(jié)制來珍惜我的身體,我用智慧和知識(shí)充實(shí)我的頭腦。15、這世上的一切都借希望而完成。農(nóng)夫不會(huì)播下一粒玉米,如果他不曾希望它長(zhǎng)成種籽;單身漢不會(huì)娶妻,如果他不曾希望有小孩;商人或手藝人不會(huì)工作,如果他不曾希望因此而有收益。--馬釘路德。圖像局部特證及其匹配的詳細(xì)講解圖像局部特證及其匹配的詳細(xì)講解11、獲得的成功越大,就越令人高興。野心是使人勤奮的原因,節(jié)制使人枯萎。12、不問收獲,只問耕耘。如同種樹,先有根莖,再有枝葉,爾后花實(shí),好好勞動(dòng),不要想太多,那樣只會(huì)使人膽孝懶惰,因?yàn)椴粚?shí)踐,甚至不接觸社會(huì),難道你是野人。(名言網(wǎng))13、不怕,不悔(雖然只有四個(gè)字,但??闯P?。14、我在心里默默地為每一個(gè)人祝福。我愛自己,我用清潔與節(jié)制來珍惜我的身體,我用智慧和知識(shí)充實(shí)我的頭腦。15、這世上的一切都借希望而完成。農(nóng)夫不會(huì)播下一粒玉米,如果他不曾希望它長(zhǎng)成種籽;單身漢不會(huì)娶妻,如果他不曾希望有小孩;商人或手藝人不會(huì)工作,如果他不曾希望因此而有收益。--馬釘路德。MatchingwithInvariantFeaturesExample:BuildaPanoramaM.BrownandD.G.Lowe.RecognisingPanoramas.ICCV2003圖像局部特證及其匹配的詳細(xì)講解11、獲得的成功越大,就越令人77圖像局部特證及其匹配的詳細(xì)講解課件78圖像局部特證及其匹配的詳細(xì)講解課件79圖像局部特證及其匹配的詳細(xì)講解課件80圖像局部特證及其匹配的詳細(xì)講解課件81MatchingwithFeaturesDetectfeaturepointsinbothimagesFindcorrespondingpairsMatchingwithFeaturesDetectf82MatchingwithFeaturesDetectfeaturepointsinbothimagesFindcorrespondingpairsUsethesepairstoalignimagesMatchingwithFeaturesDetectf83MatchingwithFeaturesProblem1:Detectthesamepointindependentlyinbothimagesnochancetomatch!WeneedarepeatabledetectorMatchingwithFeaturesProblem84MatchingwithFeaturesProblem2:Foreachpointcorrectlyrecognizethecorrespondingone?WeneedareliableanddistinctivedescriptorMatchingwithFeaturesProblem85Moremotivation…Featurepointsareusedalsofor:Imagealignment(homography,fundamentalmatrix)3DreconstructionMotiontrackingObjectrecognitionIndexinganddatabaseretrievalRobotnavigation…otherMoremotivation…Featurepoin86ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector87Anintroductoryexample:HarriscornerdetectorC.Harris,M.Stephens.“ACombinedCornerandEdgeDetector”.1988Anintroductoryexample:Harris88TheBasicIdeaWeshouldeasilyrecognizethepointbylookingthroughasmallwindowShiftingawindowinany
directionshouldgivealargechangeinintensityTheBasicIdeaWeshouldeasily89HarrisDetector:BasicIdea“flat”region:
nochangeinalldirections“edge”:
nochangealongtheedgedirection“corner”:
significantchangeinalldirectionsHarrisDetector:BasicIdea“fl90ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector91HarrisDetector:MathematicsChangeofintensityfortheshift[u,v]:IntensityShiftedintensityWindowfunctionorWindowfunctionw(x,y)=Gaussian1inwindow,0outsideHarrisDetector:MathematicsCh92HarrisDetector:MathematicsForsmallshifts[u,v]wehaveabilinearapproximation:whereMisa22matrixcomputedfromimagederivatives:HarrisDetector:MathematicsFo93HarrisDetector:MathematicsIntensitychangeinshiftingwindow:eigenvalueanalysis1,2–eigenvaluesofMdirectionoftheslowestchangedirectionofthefastestchange(max)-1/2(min)-1/2EllipseE(u,v)=constHarrisDetector:MathematicsIn94HarrisDetector:Mathematics12“Corner”
1and2arelarge,
1~2;
Eincreasesinalldirections1and2aresmall;
Eisalmostconstantinalldirections“Edge”
1>>2“Edge”
2>>1“Flat”regionClassificationofimagepointsusingeigenvaluesofM:HarrisDetector:Mathematics195HarrisDetector:MathematicsMeasureofcornerresponse:(k–empiricalconstant,k=0.04-0.06)HarrisDetector:MathematicsMe96HarrisDetector:Mathematics12“Corner”“Edge”“Edge”“Flat”
RdependsonlyoneigenvaluesofM
Rislargeforacorner
Risnegativewithlargemagnitudeforanedge|R|issmallforaflatregionR>0R<0R<0|R|smallHarrisDetector:Mathematics197HarrisDetectorTheAlgorithm:FindpointswithlargecornerresponsefunctionR(R>threshold)TakethepointsoflocalmaximaofRHarrisDetectorTheAlgorithm:98HarrisDetector:WorkflowHarrisDetector:Workflow99HarrisDetector:WorkflowComputecornerresponseRHarrisDetector:WorkflowCompu100HarrisDetector:WorkflowFindpointswithlargecornerresponse:R>thresholdHarrisDetector:WorkflowFind101HarrisDetector:WorkflowTakeonlythepointsoflocalmaximaofRHarrisDetector:WorkflowTake102HarrisDetector:WorkflowHarrisDetector:Workflow103HarrisDetector:SummaryAverageintensitychangeindirection[u,v]canbeexpressedasabilinearform:
DescribeapointintermsofeigenvaluesofM:
measureofcornerresponse
Agood(corner)pointshouldhavealargeintensitychangeinalldirections,i.e.RshouldbelargepositiveHarrisDetector:SummaryAverag104ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector105HarrisDetector:SomePropertiesRotationinvarianceEllipserotatesbutitsshape(i.e.eigenvalues)remainsthesameCornerresponseRisinvarianttoimagerotationHarrisDetector:SomeProperti106HarrisDetector:SomePropertiesPartialinvariancetoaffineintensitychange
Onlyderivativesareused=>invariancetointensityshiftI
I
+
b
Intensityscale:Ia
IRx
(imagecoordinate)thresholdRx
(imagecoordinate)HarrisDetector:SomeProperti107HarrisDetector:SomePropertiesBut:non-invarianttoimagescale!AllpointswillbeclassifiedasedgesCorner!HarrisDetector:SomeProperti108HarrisDetector:SomePropertiesQualityofHarrisdetectorfordifferentscalechangesRepeatabilityrate:#correspondences
#possiblecorrespondencesC.Schmidet.al.“EvaluationofInterestPointDetectors”.IJCV2000HarrisDetector:SomeProperti109ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector110Wewantto:detectthesameinterestpointsregardlessofimagechangesWewantto:detectthesameint111ModelsofImageChangeGeometryRotationSimilarity(rotation+uniformscale)
Affine(scaledependentondirection)
validfor:orthographiccamera,locallyplanarobjectPhotometryAffineintensitychange(Ia
I+b)ModelsofImageChangeGeometry112ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector113RotationInvariantDetectionHarrisCornerDetectorC.Schmidet.al.“EvaluationofInterestPointDetectors”.IJCV2000RotationInvariantDetectionHa114ContentsHarrisCornerDetectorDescriptionAnalysisDetectorsRotationinvariantScaleinvariantAffineinvariantDescriptorsRotationinvariantScaleinvariantAffineinvariantContentsHarrisCornerDetector115ScaleInvariantDetectionConsiderregions(e.g.circles)ofdifferentsizesaroundapointRegionsofcorrespondingsizeswilllookthesameinbothimagesScaleInvariantDetectionConsi116ScaleInvariantDetectionTheproblem:howdowechoosecorrespondingcirclesindependentlyineachimage?ScaleInvariantDetectionThep117ScaleInvariantDetectionSolution:Designafunctionontheregion(circle),whichis“scaleinvariant”(thesameforcorrespondingregions,eveniftheyareatdifferentscales)
Example:averageintensity.Forcorrespondingregions(evenofdifferentsizes)itwillbethesame.scale=1/2Forapointinoneimage,wecanconsideritasafunctionofregionsize(circleradius)
fregionsizeImage1fre
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年專業(yè)產(chǎn)品加工服務(wù)合同書
- 2025年臨時(shí)腳手架搭建租賃合同標(biāo)準(zhǔn)格式
- 2025年標(biāo)準(zhǔn)策劃競(jìng)業(yè)限制合同書
- 2025年個(gè)人定期還款貸款合同樣本
- 2025年全球技術(shù)轉(zhuǎn)讓合同規(guī)范文本
- 2025年信息技術(shù)設(shè)備購(gòu)買與維護(hù)合同范本
- 2025年供應(yīng)商與銷售商產(chǎn)品訂購(gòu)合同
- 2025年兒童樂園項(xiàng)目開發(fā)與施工建設(shè)合同
- 2025年二手新能源汽車交易合同策劃范本
- 地質(zhì)分析儀器及相關(guān)產(chǎn)品采購(gòu)合同2025
- 出血熱知識(shí)培訓(xùn)課件
- 廣東省汕頭市潮南區(qū)2024-2025學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量監(jiān)測(cè)英語試卷(無答案)
- 2024年度工業(yè)自動(dòng)化設(shè)備維護(hù)保養(yǎng)及上門維修合同3篇
- 2025年公司總經(jīng)理年終總結(jié)工作報(bào)告
- 安徽省“江淮十校”2024屆高考化學(xué)一模試卷含解析
- 圖書外借服務(wù)計(jì)劃
- 軟考系統(tǒng)集成項(xiàng)目管理工程師教程完整版
- 統(tǒng)編版八年級(jí)語文上冊(cè)第六單元作業(yè)設(shè)計(jì)
- 危險(xiǎn)性較大的分部分項(xiàng)工程清單和安全管理措施范文
- 中建通風(fēng)與空調(diào)施工方案
- 2025屆高三歷史二輪復(fù)習(xí)教學(xué)計(jì)劃
評(píng)論
0/150
提交評(píng)論