


下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023高考數(shù)學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,是函數(shù)圖像上不同的兩點,若曲線在點,處的切線重合,則實數(shù)的最小值是()A. B. C. D.12.集合,則()A. B. C. D.3.已知函數(shù)()的部分圖象如圖所示.則()A. B.C. D.4.幻方最早起源于我國,由正整數(shù)1,2,3,……,這個數(shù)填入方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形數(shù)陣就叫階幻方.定義為階幻方對角線上所有數(shù)的和,如,則()A.55 B.500 C.505 D.50505.黨的十九大報告明確提出:在共享經(jīng)濟等領域培育增長點、形成新動能.共享經(jīng)濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經(jīng)濟現(xiàn)象.為考察共享經(jīng)濟對企業(yè)經(jīng)濟活躍度的影響,在四個不同的企業(yè)各取兩個部門進行共享經(jīng)濟對比試驗,根據(jù)四個企業(yè)得到的試驗數(shù)據(jù)畫出如下四個等高條形圖,最能體現(xiàn)共享經(jīng)濟對該部門的發(fā)展有顯著效果的圖形是()A. B.C. D.6.已知過點且與曲線相切的直線的條數(shù)有().A.0 B.1 C.2 D.37.如圖所示點是拋物線的焦點,點、分別在拋物線及圓的實線部分上運動,且總是平行于軸,則的周長的取值范圍是()A. B. C. D.8.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數(shù)組成的—個階方陣,其各行各列及兩條對角線所含的個數(shù)之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.459.一個組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長為1),則該幾何體的體積是()A. B. C. D.10.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件11.公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.1212.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形二、填空題:本題共4小題,每小題5分,共20分。13.已知直線被圓截得的弦長為2,則的值為__14.定義,已知,,若恰好有3個零點,則實數(shù)的取值范圍是________.15.已知等比數(shù)列滿足公比,為其前項和,,,構成等差數(shù)列,則_______.16.已知向量,,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當時,證明:.18.(12分)已知函數(shù).(1)求曲線在點處的切線方程;(2)若對任意的,當時,都有恒成立,求最大的整數(shù).(參考數(shù)據(jù):)19.(12分)已知函數(shù)(其中是自然對數(shù)的底數(shù))(1)若在R上單調(diào)遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導數(shù)相等,證明:;(3)當時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當時,直線與曲線的交點在y軸兩側).20.(12分)已知函數(shù),.(1)求函數(shù)在處的切線方程;(2)當時,證明:對任意恒成立.21.(12分)百年大計,教育為本.某校積極響應教育部號召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進行專項培訓.據(jù)統(tǒng)計有如下表格.(其中表示通過自主招生獲得降分資格的學生人數(shù),表示被清華、北大等名校錄取的學生人數(shù))年份(屆)2014201520162017201841495557638296108106123(1)通過畫散點圖發(fā)現(xiàn)與之間具有線性相關關系,求關于的線性回歸方程;(保留兩位有效數(shù)字)(2)若已知該校2019年通過自主招生獲得降分資格的學生人數(shù)為61人,預測2019年高考該??既嗣5娜藬?shù);(3)若從2014年和2018年考人名校的學生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進行演講,求進行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.參考公式:,參考數(shù)據(jù):,,,22.(10分)已知函數(shù).(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若恒成立,求實數(shù)的取值范圍.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【答案解析】
先根據(jù)導數(shù)的幾何意義寫出在兩點處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關系樹,從而得出,令函數(shù),結合導數(shù)求出最小值,即可選出正確答案.【題目詳解】解:當時,,則;當時,則.設為函數(shù)圖像上的兩點,當或時,,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設則,由可得則當時,的最大值為.則在上單調(diào)遞減,則.故選:B.【答案點睛】本題考查了導數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉化與化歸等思想方法.本題的難點是求出和的函數(shù)關系式.本題的易錯點是計算.2.D【答案解析】
利用交集的定義直接計算即可.【題目詳解】,故,故選:D.【答案點睛】本題考查集合的交運算,注意常見集合的符號表示,本題屬于基礎題.3.C【答案解析】
由圖象可知,可解得,利用三角恒等變換化簡解析式可得,令,即可求得.【題目詳解】依題意,,即,解得;因為所以,當時,.故選:C.【答案點睛】本題主要考查了由三角函數(shù)的圖象求解析式和已知函數(shù)值求自變量,考查三角恒等變換在三角函數(shù)化簡中的應用,難度一般.4.C【答案解析】
因為幻方的每行、每列、每條對角線上的數(shù)的和相等,可得,即得解.【題目詳解】因為幻方的每行、每列、每條對角線上的數(shù)的和相等,所以階幻方對角線上數(shù)的和就等于每行(或每列)的數(shù)的和,又階幻方有行(或列),因此,,于是.故選:C【答案點睛】本題考查了數(shù)陣問題,考查了學生邏輯推理,數(shù)學運算的能力,屬于中檔題.5.D【答案解析】根據(jù)四個列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經(jīng)濟活躍度的差異最大,它最能體現(xiàn)共享經(jīng)濟對該部門的發(fā)展有顯著效果,故選D.6.C【答案解析】
設切點為,則,由于直線經(jīng)過點,可得切線的斜率,再根據(jù)導數(shù)的幾何意義求出曲線在點處的切線斜率,建立關于的方程,從而可求方程.【題目詳解】若直線與曲線切于點,則,又∵,∴,∴,解得,,∴過點與曲線相切的直線方程為或,故選C.【答案點睛】本題主要考查了利用導數(shù)求曲線上過某點切線方程的斜率,求解曲線的切線的方程,其中解答中熟記利用導數(shù)的幾何意義求解切線的方程是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.7.B【答案解析】
根據(jù)拋物線方程求得焦點坐標和準線方程,結合定義表示出;根據(jù)拋物線與圓的位置關系和特點,求得點橫坐標的取值范圍,即可由的周長求得其范圍.【題目詳解】拋物線,則焦點,準線方程為,根據(jù)拋物線定義可得,圓,圓心為,半徑為,點、分別在拋物線及圓的實線部分上運動,解得交點橫坐標為2.點、分別在兩個曲線上,總是平行于軸,因而兩點不能重合,不能在軸上,則由圓心和半徑可知,則的周長為,所以,故選:B.【答案點睛】本題考查了拋物線定義、方程及幾何性質(zhì)的簡單應用,圓的幾何性質(zhì)應用,屬于中檔題.8.B【答案解析】
計算的和,然后除以,得到“5階幻方”的幻和.【題目詳解】依題意“5階幻方”的幻和為,故選B.【答案點睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項和公式,屬于基礎題.9.C【答案解析】
根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個三棱柱,從而解得幾何體的體積.【題目詳解】由幾何體的三視圖可得,幾何體的結構是在一個底面半徑為1的圓、高為2的圓柱中挖去一個底面腰長為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【答案點睛】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結構求出其體積.10.B【答案解析】
構造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個面中根據(jù)題意恰當?shù)倪x取直線為m,n即可進行判斷.【題目詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令AD1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內(nèi)的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【答案點睛】本題考點有兩個:①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進行判斷;②是空間的垂直關系,一般利用長方體為載體進行分析.11.C【答案解析】
由開始,按照框圖,依次求出s,進行判斷?!绢}目詳解】,故選C.【答案點睛】框圖問題,依據(jù)框圖結構,依次準確求出數(shù)值,進行判斷,是解題關鍵。12.C【答案解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質(zhì)及推論.二、填空題:本題共4小題,每小題5分,共20分。13.1【答案解析】
根據(jù)弦長為半徑的兩倍,得直線經(jīng)過圓心,將圓心坐標代入直線方程可解得.【題目詳解】解:圓的圓心為(1,1),半徑,
因為直線被圓截得的弦長為2,
所以直線經(jīng)過圓心(1,1),
,解得.故答案為:1.【答案點睛】本題考查了直線與圓相交的性質(zhì),屬基礎題.14.【答案解析】
根據(jù)題意,分類討論求解,當時,根據(jù)指數(shù)函數(shù)的圖象和性質(zhì)無零點,不合題意;當時,令,得,令,得或,再分當,兩種情況討論求解.【題目詳解】由題意得:當時,在軸上方,且為增函數(shù),無零點,至多有兩個零點,不合題意;當時,令,得,令,得或,如圖所示:當時,即時,要有3個零點,則,解得;當時,即時,要有3個零點,則,令,,所以在是減函數(shù),又,要使,則須,所以.綜上:實數(shù)的取值范圍是.故答案為:【答案點睛】本題主要考查二次函數(shù),指數(shù)函數(shù)的圖象和分段函數(shù)的零點問題,還考查了分類討論的思想和運算求解的能力,利用導數(shù)判斷函數(shù)單調(diào)性,屬于中檔題.15.0【答案解析】
利用等差中項以及等比數(shù)列的前項和公式即可求解.【題目詳解】由,,是等差數(shù)列可知因為,所以,故答案為:0【答案點睛】本題考查了等差中項的應用、等比數(shù)列的前項和公式,需熟記公式,屬于基礎題.16.3【答案解析】
由題意得,,再代入中,計算即可得答案.【題目詳解】由題意可得,,∴,解得,∴.故答案為:.【答案點睛】本題考查向量模的計算,考查函數(shù)與方程思想、轉化與化歸思想,考查運算求解能力,求解時注意向量數(shù)量積公式的運用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)見解析【答案解析】
(1)求導得,分類討論和,利用導數(shù)研究含參數(shù)的函數(shù)單調(diào)性;(2)根據(jù)(1)中求得的的單調(diào)性,得出在處取得最大值為,構造函數(shù),利用導數(shù),推出,即可證明不等式.【題目詳解】解:(1)由于,得,當時,,此時在上遞增;當時,由,解得,若,則,若,,此時在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設,則,令,則,則在單調(diào)遞減,∴,即,則在單調(diào)遞減∴,∴,∴.【答案點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論和構造新函數(shù),通過導數(shù)證明不等式,考查轉化思想和計算能力.18.(1)(2)2【答案解析】
(1)先求得切點坐標,利用導數(shù)求得切線的斜率,由此求得切線方程.(2)對分成,兩種情況進行分類討論.當時,將不等式轉化為,構造函數(shù),利用導數(shù)求得的最小值(設為)的取值范圍,由的得在上恒成立,結合一元二次不等式恒成立,判別式小于零列不等式,解不等式求得的取值范圍.【題目詳解】(1)已知函數(shù),則處即為,又,,可知函數(shù)過點的切線為,即.(2)注意到,不等式中,當時,顯然成立;當時,不等式可化為令,則,,所以存在,使.由于在上遞增,在上遞減,所以是的唯一零點.且在區(qū)間上,遞減,在區(qū)間上,遞增,即的最小值為,令,則,將的最小值設為,則,因此原式需滿足,即在上恒成立,又,可知判別式即可,即,且可以取到的最大整數(shù)為2.【答案點睛】本小題主要考查利用導數(shù)求切線方程,考查利用導數(shù)研究不等式恒成立問題,考查化歸與轉化的數(shù)學思想方法,屬于難題.19.(1);(2)見解析;(3)見解析【答案解析】
(1)需滿足恒成立,只需即可;(2)根據(jù)的單調(diào)性,構造新函數(shù),并令,根據(jù)的單調(diào)性即可得證;(3)將問題轉化為證明有唯一實數(shù)解,對求導,判斷其單調(diào)性,結合題目條件與不等式的放縮,即可得證.【題目詳解】;令,則恒成立;,;的取值范圍是;(2)證明:由(1)知,在上單調(diào)遞減,在上單調(diào)遞增;;令,;則;令,則;;;(3)證明:,,要證明有唯一實數(shù)解;當時,;當時,;即對于任意實數(shù),一定有解;;當時,有兩個極值點;函數(shù)在,,上單調(diào)遞增,在上單調(diào)遞減;又;只需,在時恒成立;只需;令,其中一個正解是;,;單調(diào)遞增,,(1);;;綜上得證.【答案點睛】本題考查了利用導數(shù)研究函數(shù)的單調(diào)性,考查了利用導數(shù)證明不等式,考查了轉化思想、不等式的放縮,屬難題.20.(1)(2)見解析【答案解析】
(1)因為,可得,即可求得答案;(2)要證對任意恒成立,即證對任意恒成立.設,,當時,,即可求得答案.【題目詳解】(1),,,函數(shù)在處的切線方程為.(2)要證對任意恒成立.即證對任意恒成立.設,,當時,,,令,解得,當時,,函數(shù)在上單調(diào)遞減;當時,,函數(shù)在上單調(diào)遞增.,,,當時,對任意恒成立,即當時,對任意恒成立.【答案點睛】本題主要考查了求曲線的切線方程和求證不等式恒成立問題,解題關鍵是掌握由導數(shù)求切線方程的解法和根據(jù)導數(shù)求證不等式恒成立的方法,考查了分析能力和計算能力,屬于難題.21.(1);(2)117人;(3)分布列見解析,【答案解析】
(1)首先求得和,再代入公式即可列方程,由此求得關于的線性回歸方程;(2)根據(jù)回歸直線方程計算公式,計算可得人數(shù);(3)和被選中的人數(shù)分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 骨科病房護理要點與實踐
- 牽引術護理要點
- 生產(chǎn)管理:運作戰(zhàn)略管理
- 2025屆廣東汕尾甲子鎮(zhèn)瀛江學校八年級數(shù)學第二學期期末聯(lián)考模擬試題含解析
- 血液臭氧治療
- 重癥護理核心理念與實務
- 手寫護理文書標準化管理
- 高一新生住宿管理規(guī)范與實施策略
- 與法律有關的職業(yè)考試題及答案
- 經(jīng)典誦讀活動總結模版
- 銅冶煉過程清潔生產(chǎn)-洞察分析
- (一統(tǒng))昆明市2025屆高三“三診一模”摸底診斷測試 化學試卷(含官方答案)
- 《電力系統(tǒng)仿真概述》課件
- 煤礦排矸場、矸石山生態(tài)環(huán)境治理工程施工組織設計
- 2023年智慧樹知到《大學生安全文化》答案全
- 個性化旅游定制服務設計與運營策略制定
- 《CMOS反相器的設計》課件
- 《中學生入學協(xié)議書》
- 頭暈課件完整版本
- 中華人民共和國學前教育法
- 2024年5月26日河南省事業(yè)單位聯(lián)考《職業(yè)能力測試》試題
評論
0/150
提交評論