廣東省茂名市高州2023年中考數(shù)學對點突破模擬試卷含答案解析_第1頁
廣東省茂名市高州2023年中考數(shù)學對點突破模擬試卷含答案解析_第2頁
廣東省茂名市高州2023年中考數(shù)學對點突破模擬試卷含答案解析_第3頁
免費預覽已結(jié)束,剩余19頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

廣東省茂名市高州2023年中考數(shù)學對點突破模擬測試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x=0 B.x=2 C.x≠0 D.x≠22.如圖,在平行線l1、l2之間放置一塊直角三角板,三角板的銳角頂點A,B分別在直線l1、l2上,若∠l=65°,則∠2的度數(shù)是()A.25° B.35° C.45° D.65°3.制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴大為原來的3倍,那么擴大后長方形廣告牌的成本是()A.360元 B.720元 C.1080元 D.2160元4.如圖,五邊形ABCDE中,AB∥CD,∠1、∠2、∠3分別是∠BAE、∠AED、∠EDC的外角,則∠1+∠2+∠3等于A.90° B.180° C.210° D.270°5.從①②③④中選擇一塊拼圖板可與左邊圖形拼成一個正方形,正確的選擇為()A.① B.② C.③ D.④6.在0,﹣2,3,四個數(shù)中,最小的數(shù)是()A.0 B.﹣2 C.3 D.7.滴滴快車是一種便捷的出行工具,計價規(guī)則如下表:計費項目

里程費

時長費

遠途費

單價

1.8元/公里

0.3元/分鐘

0.8元/公里

注:車費由里程費、時長費、遠途費三部分構(gòu)成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠途費的收取方式為:行車里程7公里以內(nèi)(含7公里)不收遠途費,超過7公里的,超出部分每公里收0.8元.

小王與小張各自乘坐滴滴快車,行車里程分別為6公里與8.5公里,如果下車時兩人所付車費相同,那么這兩輛滴滴快車的行車時間相差()A.10分鐘 B.13分鐘 C.15分鐘 D.19分鐘8.下列運算正確的是()A.(﹣2a)3=﹣6a3 B.﹣3a2?4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a9.如圖,將一塊含有30°角的直角三角板的兩個頂點放在長方形直尺的一組對邊上,如果∠1=30°,那么∠2的度數(shù)為()A.30° B.40° C.50° D.60°10.如圖,△ABC紙片中,∠A=56,∠C=88°.沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD.則∠BDE的度數(shù)為()A.76° B.74° C.72° D.70°二、填空題(共7小題,每小題3分,滿分21分)11.如圖,AB,AC分別為⊙O的內(nèi)接正六邊形,內(nèi)接正方形的一邊,BC是圓內(nèi)接n邊形的一邊,則n等于_____.12.若分式a2-9a+313.從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),抽到有理數(shù)的概率是____.14.如圖,在?ABCD中,AD=2,AB=4,∠A=30°,以點A為圓心,AD的長為半徑畫弧交AB于點E,連接CE,則陰影部分的面積是▲(結(jié)果保留π).15.太陽半徑約為696000千米,數(shù)字696000用科學記數(shù)法表示為千米.16.已知方程的一個根為1,則的值為__________.17.如圖,已知反比例函數(shù)y=(k為常數(shù),k≠0)的圖象經(jīng)過點A,過A點作AB⊥x軸,垂足為B,若△AOB的面積為1,則k=________________.三、解答題(共7小題,滿分69分)18.(10分)如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點D,BC是⊙O的切線,E為BC的中點,連接AE、DE.求證:DE是⊙O的切線;設△CDE的面積為S1,四邊形ABED的面積為S1.若S1=5S1,求tan∠BAC的值;在(1)的條件下,若AE=3,求⊙O的半徑長.19.(5分)(1)問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點P為AB上一點,當∠DPC=∠A=∠B=θ時,上述結(jié)論是否依然成立.說明理由.(3)應用:請利用(1)(2)獲得的經(jīng)驗解決問題:如圖3,在△ABD中,AB=6,AD=BD=1.點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A.設點P的運動時間為t(秒),當DC的長與△ABD底邊上的高相等時,求t的值.20.(8分)水龍頭關閉不緊會造成滴水,小明用可以顯示水量的容器做圖①所示的試驗,并根據(jù)試驗數(shù)據(jù)繪制出圖②所示的容器內(nèi)盛水量W(L)與滴水時間t(h)的函數(shù)關系圖象,請結(jié)合圖象解答下列問題:容器內(nèi)原有水多少?求W與t之間的函數(shù)關系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升?圖①圖②21.(10分)如圖,已知△ABC是等邊三角形,點D在AC邊上一點,連接BD,以BD為邊在AB的左側(cè)作等邊△DEB,連接AE,求證:AB平分∠EAC.22.(10分)(7分)某中學1000名學生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取整數(shù),滿分為100分)作為樣本進行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:成績分組頻數(shù)頻率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合計■1(1)寫出a,b,c的值;(2)請估計這1000名學生中有多少人的競賽成績不低于70分;(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學參加環(huán)保知識宣傳活動,求所抽取的2名同學來自同一組的概率.23.(12分)如圖1,在直角梯形ABCD中,AB⊥BC,AD∥BC,點P為DC上一點,且AP=AB,過點C作CE⊥BP交直線BP于E.(1)若ABBC=3(2)若AB=BC.①如圖2,當點P與E重合時,求PDPC②如圖3,設∠DAP的平分線AF交直線BP于F,當CE=1,PDPC24.(14分)如圖,矩形中,對角線,相交于點,且,.動點,分別從點,同時出發(fā),運動速度均為lcm/s.點沿運動,到點停止.點沿運動,點到點停留4后繼續(xù)運動,到點停止.連接,,,設的面積為(這里規(guī)定:線段是面積為0的三角形),點的運動時間為.(1)求線段的長(用含的代數(shù)式表示);(2)求時,求與之間的函數(shù)解析式,并寫出的取值范圍;(3)當時,直接寫出的取值范圍.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【答案解析】

根據(jù)分式的分母不等于0即可解題.【題目詳解】解:∵代數(shù)式有意義,∴x-2≠0,即x≠2,故選D.【答案點睛】本題考查了分式有意義的條件,屬于簡單題,熟悉分式有意義的條件是解題關鍵.2、A【答案解析】

如圖,過點C作CD∥a,再由平行線的性質(zhì)即可得出結(jié)論.【題目詳解】如圖,過點C作CD∥a,則∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故選A.【答案點睛】本題考查了平行線的性質(zhì)與判定,根據(jù)題意作出輔助線,構(gòu)造出平行線是解答此題的關鍵.3、C【答案解析】

根據(jù)題意求出長方形廣告牌每平方米的成本,根據(jù)相似多邊形的性質(zhì)求出擴大后長方形廣告牌的面積,計算即可.【題目詳解】3m×2m=6m2,∴長方形廣告牌的成本是120÷6=20元/m2,將此廣告牌的四邊都擴大為原來的3倍,則面積擴大為原來的9倍,∴擴大后長方形廣告牌的面積=9×6=54m2,∴擴大后長方形廣告牌的成本是54×20=1080元,故選C.【答案點睛】本題考查的是相似多邊形的性質(zhì),掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.4、B【答案解析】

測試卷分析:如圖,如圖,過點E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故選B5、C【答案解析】

根據(jù)正方形的判定定理即可得到結(jié)論.【題目詳解】與左邊圖形拼成一個正方形,正確的選擇為③,故選C.【答案點睛】本題考查了正方形的判定,是一道幾何結(jié)論開放題,認真觀察,熟練掌握和應用正方形的判定方法是解題的關鍵.6、B【答案解析】

根據(jù)實數(shù)比較大小的法則進行比較即可.【題目詳解】∵在這四個數(shù)中3>0,>0,-2<0,∴-2最小.故選B.【答案點睛】本題考查的是實數(shù)的大小比較,即正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而?。?、D【答案解析】

設小王的行車時間為x分鐘,小張的行車時間為y分鐘,根據(jù)計價規(guī)則計算出小王的車費和小張的車費,建立方程求解.【題目詳解】設小王的行車時間為x分鐘,小張的行車時間為y分鐘,依題可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5-7),10.8+0.3x=16.5+0.3y,0.3(x-y)=5.7,x-y=19,故答案為D.【答案點睛】本題考查列方程解應用題,讀懂表格中的計價規(guī)則是解題的關鍵.8、B【答案解析】

先根據(jù)同底數(shù)冪的乘法法則進行運算即可?!绢}目詳解】A.;故本選項錯誤;B.﹣3a2?4a3=﹣12a5;故本選項正確;C.;故本選項錯誤;D.不是同類項不能合并;故本選項錯誤;故選B.【答案點睛】先根據(jù)同底數(shù)冪的乘法法則,冪的乘方,積的乘方,合并同類項分別求出每個式子的值,再判斷即可.9、D【答案解析】如圖,因為,∠1=30°,∠1+∠3=60°,所以∠3=30°,因為AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故選D.10、B【答案解析】

直接利用三角形內(nèi)角和定理得出∠ABC的度數(shù),再利用翻折變換的性質(zhì)得出∠BDE的度數(shù).【題目詳解】解:∵∠A=56°,∠C=88°,

∴∠ABC=180°-56°-88°=36°,

∵沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,

∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,

∴∠BDE=180°-18°-88°=74°.

故選:B.【答案點睛】此題主要考查了三角形內(nèi)角和定理,正確掌握三角形內(nèi)角和定理是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、12【答案解析】連接AO,BO,CO,如圖所示:∵AB、AC分別為⊙O的內(nèi)接正六邊形、內(nèi)接正方形的一邊,∴∠AOB==60°,∠AOC==90°,∴∠BOC=30°,∴n==12,故答案為12.12、1.【答案解析】測試卷分析:根據(jù)分式的值為0的條件列出關于a的不等式組,求出a的值即可.測試卷解析:∵分式a2∴a2解得a=1.考點:分式的值為零的條件.13、【答案解析】分析:由題意可知,從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),共有5種等可能結(jié)果,其中是有理數(shù)的有3種,由此即可得到所求概率了.詳解:∵從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),共有5種等可能結(jié)果,其中有理數(shù)有0,3.14,6共3個,∴抽到有理數(shù)的概率是:.故答案為.點睛:知道“從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),共有5種等可能結(jié)果”并能識別其中“0,3.14,6”是有理數(shù)是解答本題的關鍵.14、3【答案解析】

過D點作DF⊥AB于點F.∵AD=1,AB=4,∠A=30°,∴DF=AD?sin30°=1,EB=AB﹣AE=1.∴陰影部分的面積=平行四邊形ABCD的面積-扇形ADE面積-三角形CBE的面積=4×故答案為:3-15、.【答案解析】測試卷分析:696000=6.96×1,故答案為6.96×1.考點:科學記數(shù)法—表示較大的數(shù).16、1【答案解析】

欲求m,可將該方程的已知根1代入兩根之積公式和兩根之和公式列出方程組,解方程組即可求出m值.【題目詳解】設方程的另一根為x1,又∵x=1,∴,解得m=1.故答案為1.【答案點睛】本題的考點是一元二次方程的根的分布與系數(shù)的關系,主要考查利用韋達定理解題.此題也可將x=1直接代入方程3x2-9x+m=0中求出m的值.17、-1【答案解析】測試卷解析:設點A的坐標為(m,n),因為點A在y=的圖象上,所以,有mn=k,△ABO的面積為=1,∴=1,∴=1,∴k=±1,由函數(shù)圖象位于第二、四象限知k<0,∴k=-1.考點:反比例外函數(shù)k的幾何意義.三、解答題(共7小題,滿分69分)18、(1)見解析;(1)tan∠BAC=;(3)⊙O的半徑=1.【答案解析】

(1)連接DO,由圓周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根據(jù)E為BC的中點可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性質(zhì)就可以得出∠ODE=90°就可以得出結(jié)論.(1)由S1=5S1可得△ADB的面積是△CDE面積的4倍,可求得AD:CD=1:1,可得.則tan∠BAC的值可求;(3)由(1)的關系即可知,在Rt△AEB中,由勾股定理即可求AB的長,從而求⊙O的半徑.【題目詳解】解:(1)連接OD,∴OD=OB∴∠ODB=∠OBD.∵AB是直徑,∴∠ADB=90°,∴∠CDB=90°.∵E為BC的中點,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB為直徑的⊙O的切線,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,∴DE是⊙O的切線;(1)∵S1=5S1∴S△ADB=1S△CDB∴∵△BDC∽△ADB∴∴DB1=AD?DC∴∴tan∠BAC==.(3)∵tan∠BAC=∴,得BC=AB∵E為BC的中點∴BE=AB∵AE=3,∴在Rt△AEB中,由勾股定理得,解得AB=4故⊙O的半徑R=AB=1.【答案點睛】本題考查了圓周角定理的運用,直角三角形的性質(zhì)的運用,等腰三角形的性質(zhì)的運用,切線的判定定理的運用,勾股定理的運用,相似三角形的判定和性質(zhì),解答時正確添加輔助線是關鍵.19、(2)證明見解析;(2)結(jié)論成立,理由見解析;(3)2秒或2秒.【答案解析】

(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運用相似三角形的性質(zhì)即可解決問題;(3)過點D作DE⊥AB于點E,根據(jù)等腰三角形的性質(zhì)可得AE=BE=3,根據(jù)勾股定理可得DE=4,由題可得DC=DE=4,則有BC=2-4=2.易證∠DPC=∠A=∠B.根據(jù)ADBC=APBP,就可求出t的值.【題目詳解】解:(2)如圖2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴ADBC=APBP;(2)結(jié)論ADBC=APBP仍成立;證明:如圖2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴ADBC=APBP;(3)如下圖,過點D作DE⊥AB于點E,∵AD=BD=2,AB=6,∴AE=BE=3∴DE==4,∵以D為圓心,以DC為半徑的圓與AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的經(jīng)驗得AD?BC=AP?BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值為2秒或2秒.【答案點睛】本題考查圓的綜合題.20、(1)0.3L;(2)在這種滴水狀態(tài)下一天的滴水量為9.6L.【答案解析】

(1)根據(jù)點的實際意義可得;(2)設與之間的函數(shù)關系式為,待定系數(shù)法求解可得,計算出時的值,再減去容器內(nèi)原有的水量即可.【題目詳解】(1)由圖象可知,容器內(nèi)原有水0.3L.(2)由圖象可知W與t之間的函數(shù)圖象經(jīng)過點(0,0.3),故設函數(shù)關系式為W=kt+0.3.又因為函數(shù)圖象經(jīng)過點(1.5,0.9),代入函數(shù)關系式,得1.5k+0.3=0.9,解得k=0.4.故W與t之間的函數(shù)關系式為W=0.4t+0.3.當t=24時,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),即在這種滴水狀態(tài)下一天的滴水量為9.6L.【答案點睛】本題考查了一次函數(shù)的應用,關鍵是利用待定系數(shù)法正確求出一次函數(shù)的解析式.21、詳見解析【答案解析】

由等邊三角形的性質(zhì)得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,證出∠ABE=∠CBD,證明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出結(jié)論.【題目詳解】證明:∵△ABC,△DEB都是等邊三角形,∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD,BE=BD,,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠BAE=∠BAC,∴AB平分∠EAC.【答案點睛】本題考查了全等三角形的判定與性質(zhì),等邊三角形的性質(zhì)等知識,熟練掌握等邊三角形的性質(zhì),證明三角形全等是解題的關鍵.22、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【答案解析】

(1)利用50≤x<60的頻數(shù)和頻率,根據(jù)公式:頻率=頻數(shù)÷總數(shù)先計算出樣本總?cè)藬?shù),再分別計算出a,b,c的值;(2)先計算出競賽分數(shù)不低于70分的頻率,根據(jù)樣本估計總體的思想,計算出1000名學生中競賽成績不低于70分的人數(shù);(3)列樹形圖或列出表格,得到要求的所有情況和2名同學來自一組的情況,利用求概率公式計算出概率.【題目詳解】解:(1)樣本人數(shù)為:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人數(shù)為:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在選取的樣本中,競賽分數(shù)不低于70分的頻率是0.5+0.06+0.04=0.6,根據(jù)樣本估計總體的思想,有:1000×0.6=600(人)∴這1000名學生中有600人的競賽成績不低于70分;(3)成績是80分以上的同學共有5人,其中第4組有3人,不妨記為甲,乙,丙,第5組有2人,不妨記作A,B從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學,情形如樹形圖所示,共有20種情況:抽取兩名同學在同一組的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8種情況,∴抽取的2名同學來自同一組的概率P==【答案點睛】本題考查了頻數(shù)、頻率、總數(shù)間關系及用列表法或樹形圖法求概率.列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹形圖法適合兩步或兩步以上完成的事件;概率=所求情況數(shù)與總情況數(shù)之比.23、(1)證明見解析;(2)①32【答案解析】

(1)過點A作AF⊥BP于F,根據(jù)等腰三角形的性質(zhì)得到BF=BP,易證Rt△ABF∽Rt△BCE,根據(jù)相似三角形的性質(zhì)得到ABBC=BF(2)①延長BP、AD交于點F,過點A作AG⊥BP于G,證明△ABG≌△BCP,根據(jù)全等三角形的性質(zhì)得BG=CP,設BG=1,則PG=PC=1,BC=AB=5,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出PDPC②延長BF、AD交于點G,過點A作AH⊥BE于H,證明△ABH≌△BCE,根據(jù)全等三角形的性質(zhì)得BG=CP,設BH=BP=CE=1,又PDPC=PGPB=74,得到PG=7AH=AB2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論