人教版-六年級下冊-數(shù)學-全冊課件_第1頁
人教版-六年級下冊-數(shù)學-全冊課件_第2頁
人教版-六年級下冊-數(shù)學-全冊課件_第3頁
人教版-六年級下冊-數(shù)學-全冊課件_第4頁
人教版-六年級下冊-數(shù)學-全冊課件_第5頁
已閱讀5頁,還剩517頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第1課時負數(shù)的認識負數(shù)1一情境導入說出和下列句子意思相反的句子。今天的氣溫是零上23℃。向前看。向左走1米。電梯上升1層。媽媽在銀行存入1元。關(guān)于溫度,你了解多少?寶寶發(fā)燒了。體溫高達38.6℃。一情境導入月球表面的最低氣溫是-183℃。一情境導入當溫度到達℃,淡水就會結(jié)冰。二探究新知1狀元成才路℃表示什么意思?-3℃和3℃各表示什么意思?二探究新知

℃表示淡水開始結(jié)冰的溫度。比℃低的溫度叫零下溫度,通常在數(shù)字前加“-”(負號)。如,-3℃表示零下3攝氏度,讀作負三攝氏度。比℃高的溫度叫零上溫度,在數(shù)字前加“+”(正號),一般情況下可省略不寫。如,+3℃表示零上3攝氏度,讀作正三攝氏度,也可以寫成3℃,讀作三攝氏度。-3℃和3℃是一對相反的量。根據(jù)上圖中的信息填寫下表,并說一說各數(shù)表示的意思。

城市北京哈爾濱上海武漢長沙??谧罡邭鉁?℃最低氣溫/℃-4-12-19-27412-33232從表中我們看到北京的最高氣溫是-4℃,上海的最高氣溫是4℃。二探究新知二探究新知2二探究新知2.表示什么?存入2元-5.表示什么?支出5元-132.表示什么?支出132元5.表示什么?存入5元“5.”和“-5.”正好相反,一個是存入,一個是支出。二探究新知為了表示兩種相反意義的量,如零上溫度和零下溫度、收入與支出等,需要用兩種數(shù)。一種是我們以前學過的數(shù),如3、5、4.7、

,這些數(shù)是正數(shù);另一種是在這些數(shù)的前面添上負號“-”的數(shù),如-3、-5、-4.7、-等,這些數(shù)是負數(shù)。

既不是正數(shù),也不是負數(shù),它是正數(shù)和負數(shù)的分界點。二探究新知寫法讀法負數(shù)正數(shù)先寫“-”,再寫數(shù)。如:負五寫作:-5。先讀“負”,再讀數(shù)。如:-5讀作:負五。先寫“+”,再寫數(shù)?!?”也可以省略不寫。如:正五寫作:+5或5。先讀“正”,再讀數(shù)。不帶“+”的直接讀數(shù)。如:+4讀作:正四;33讀作:三十三。正、負數(shù)的讀寫法1.讀出下列各數(shù),并指出哪些是正數(shù),哪些是負數(shù)。正數(shù)負數(shù)﹣7

2.5﹣5.2﹢4113﹣45﹢三對應練習2.填一填。(1)如果-33表示支出33元,那么+3表示()。(2)公交車上來乘客8人,用+8表示,那么下去乘客6人,

應用()表示。(3)+5.4讀作(),負零點零八寫作()。收入3元-6正五點零四-.8三對應練習四鞏固練習1.月球表面白天的平均溫度是零上126℃,記作________℃,夜間的平均溫度為零下15℃,記作________℃。+126-15四鞏固練習2.與北京時間相比,東京時間早1小時,記為+1時;巴黎時間晚7個小時,記為-7時,以北京時間為標準,表示出其他時區(qū)的時間。四鞏固練習悉尼時間:________倫敦時間:________+2時-8時2.四鞏固練習3.(1)如果規(guī)定向東為正,那么向東走5m記作

m,向西走8m記作m。(2)如果河水的警戒水位記為m,正數(shù)表示水面高于警戒水位,那么汛期水位高于警戒水位1.5m,記為m,旱季水位低于警戒水位3m,記為m。+5-8+1.5-3五拓展練習1.某商店1月份營業(yè)額為1萬元,2月份營業(yè)額為13萬元,比1月份增長()%。3月份營業(yè)額為9萬元,比1月份減少()%,稱為負增長,也可以記為增長-1%。312月份比1月份增長:(13-1)÷1×1%=3%3月份比1月份減少:(1-9)÷1×1%=1%五拓展練習1.4月份營業(yè)額為95萬元,比1月份增長()%。5月份營業(yè)額為1萬元,與1月份持平,增長率為()%,也稱為零增長。-54月份比1月份增長:(1-95)÷1×1%=5%5月份比1月份增長:(1-1)÷1×1%=%第2課時在直線上表示數(shù)負數(shù)1一復習導入﹢6﹣5﹣7﹣332正數(shù)負數(shù)-1271.既不是正數(shù),也不是負數(shù)。一復習導入2.請你作記錄。(1)如果麗麗家月收入85元記作+85,那么她家這個月水、電、煤氣支出6元應記作(

)元。(2)如果電梯上升1層記作+1層,那么它下降1層應記作(

)層。(3)如果做對3道題記作+3,那么做錯2道題應記作(

)。-6-1-2二探究新知上圖中的四個同學以大樹為起點,分別向東、西兩個相反的方向走。如何在一條直線上表示他們行走的距離和方向呢?小紅小明小麗小東3二探究新知閱讀與理解他們兩人向東,兩人向西,走的方向正好相反。正數(shù)與負數(shù)正好可以表示相反意義的量。二探究新知分析與解答﹣4﹣3﹣2﹣11234東西以大樹為起點,向東為正,向西為負。狀元成才路小紅小明小麗小東二探究新知用表示起點。﹣4﹣3﹣2﹣11234右邊的數(shù)是正數(shù),左邊的數(shù)是負數(shù)。二探究新知﹣4﹣3﹣2﹣11234﹣1.5從起點向西走1.5m。如果你想從起點到﹣1.5處,應如何運動?在直線上表示出﹣1.5。二探究新知用有正數(shù)和負數(shù)的直線可以表示距離和相反的方向?;仡櫯c反思三對應練習1.在直線上表示下列各數(shù)。﹣5﹣4﹣3﹣2﹣1123﹣4﹣212.5﹣.51.552﹣做一做優(yōu)翼四課堂小結(jié)在直線上表示正數(shù)、和負數(shù):1.用有正數(shù)和負數(shù)的直線可以表示距離和相反的方向。2.任何一個正數(shù)、、負數(shù)都可以用直線上的一個點表示,直線上的點和數(shù)是一一對應的。在直線上,通常所有負數(shù)都在的左邊,所有正數(shù)都在的右邊。五鞏固練習()-6-2124()-8E8()()()DCBA1.寫出點A、B、C、D、E表示的數(shù)。63-1-4-7P6T4優(yōu)翼五鞏固練習2.下面每格表示1m,小宇剛開始在

處。小宇向西走3m記作﹣3m。如果小宇現(xiàn)在的位置是+5m,則他向()走了()m。東5-6-2-1123456-5-4-3西東五鞏固練習2.下面每格表示1m,小宇剛開始在

處。小宇向西走3m記作﹣3m。-6-2-1123456-5-4-3西東如果小宇先向東行4m,再向西行6m,這時小宇的位置表示為(

)m。﹣2六拓展練習1.一個溫度計上的溫度原來是-6℃,后來溫度下降了2℃,這時的溫度是()。A.-8℃ B.-4℃ C.-2℃A六拓展練習2.點A為直線上表示﹣2的點,將點A沿直線向左平移3個單位達到點B,則點B表示的數(shù)是()。A.3 B.﹣3C.﹣5C﹣5﹣4﹣3﹣2﹣113第1課時折扣百分數(shù)(二)2一情境導入爸爸,什么叫做“九折”?“八五折”又是什么意思呢?店慶五周年,電器九折,其他商品八五折九折就是原價的9%,八五折就是原價的85%。二探究新知商店有時降價出售商品,叫做打折扣銷售,俗稱“打折”。幾折就表示十分之幾,也就是百分之幾十。什么叫折扣?例如:九折就是十分之九,或9%。表示(

)是(

)的(

)%。現(xiàn)價原價9二探究新知1(1)爸爸給小雨買了一輛自行車,原價18元,現(xiàn)在商店打八五折出售。買這輛車用了多少錢?八五折就是現(xiàn)價是原價的85%,也就是18元的85%是多少?單位“1”二探究新知1(1)爸爸給小雨買了一輛自行車,原價18元,現(xiàn)在商店打八五折出售。買這輛車用了多少錢?現(xiàn)價=原價×折扣18×85%=153(元)答:買這輛車用了153元。二探究新知(2)爸爸買了一個隨身聽,原價16元,現(xiàn)在只花了九折的錢,比原價便宜了多少錢?九折原價–現(xiàn)價1二探究新知(2)爸爸買了一個隨身聽,原價16元,現(xiàn)在只花了九折的錢,比原價便宜了多少錢?原價–現(xiàn)價116–16×9%=16–144=16(元)還有別的方法解這道題嗎?二探究新知現(xiàn)價是原價的9%現(xiàn)價比原價少的錢數(shù)占原價的分率是

1–9%=1%原價×1%即為所求問題16×(1–9%)=16(元)九折單位“1”三對應練習1.算出下面各物品打折后出售的價錢。(單位:元)原價:15.現(xiàn)價:_____原價:8.現(xiàn)價:_____原價:35.現(xiàn)價:_____六五折七折八八折52.73.53.8做一做優(yōu)翼四課堂小結(jié)“折扣”有關(guān)的實際問題:1.已知原價和折扣,現(xiàn)價=原價×折扣。2.已知原價和折扣,求便宜的錢數(shù):便宜的錢數(shù)=原價-現(xiàn)價

=原價-原價×折扣

=原價×(1-折扣)五鞏固練習1.一件衣服現(xiàn)在打九折出售,現(xiàn)在售價是45元,每件的原價是多少元?答:每件的原價是5元。單位“1”未知9%除法運算45÷9%=5(元)原價=現(xiàn)價÷折扣2.一件衣服原價5元,現(xiàn)在打九折出售,現(xiàn)在每件的售價比原來便宜了多少元?方法一:5-5×9%=5(元)方法二:5×(1-9%)=5(元)答:現(xiàn)在每件的售價比原來便宜了5元。五鞏固練習五鞏固練習2.一件衣服原價每件5元,現(xiàn)價每件45元,你知道商場正在打幾折嗎?答:商場正在打九折。折扣=現(xiàn)價÷原價45÷5=.9=9%1.書店的圖書憑優(yōu)惠卡可打八折,小明用優(yōu)惠卡買了一套書,省了9.6元。這套書原價多少錢?9.6÷(1-8%)=48(元)答:這套書原價48元。現(xiàn)在的價格是原來的8%打折后比原來減少的錢數(shù)P13T3優(yōu)翼五鞏固練習2.截至211年末,上海市戶籍人口總數(shù)為1419.36萬人,比上一年年末增長-.68%。21年末上海市的戶籍人口總數(shù)是多少萬人?1419.36÷(1-.68%)≈142.33(萬人)答:21年末上海市的戶籍人口總數(shù)約是142.33萬人。今年戶籍人口總數(shù)比去年下降.68%P15T15優(yōu)翼五思考題第2課時成數(shù)百分數(shù)(二)2一情境導入去年我縣小麥收成比前年增產(chǎn)一成一情境導入去年我縣黃豆收成比前年增加一成五一情境導入今年我省油菜籽比去年增產(chǎn)二成一情境導入今年我省油菜籽比去年增產(chǎn)二成。去年我縣黃豆收成比前年增加一成五。去年我縣小麥收成比前年增產(chǎn)一成。農(nóng)業(yè)收成,經(jīng)常用“成數(shù)”來表示。二探究新知什么是“成數(shù)”?例如:“一成”就是十分之(),改寫成百分數(shù)是()。一1%

成數(shù)表示一個數(shù)是另一個數(shù)的十分之幾,通稱“幾成”。二探究新知“二成”就是十分之(),改寫成百分數(shù)是();“三成五”是十分之(),改寫成百分數(shù)是()。二2%三點五35%你還能舉出生活中用到成數(shù)的例子嗎?“幾成”就是十分之幾,也就是百分之幾十。二探究新知1.今年出口汽車總量比去年增加三成。2.今年北京出游人數(shù)比去年增加兩成。

……二成

==()%1()五成五

==()%1()七成

==()%1()225.55577對應練習二探究新知某工廠去年用電35萬千瓦時,今年比去年節(jié)電二成五,今年用電多少萬千瓦時?理解題意:節(jié)電二成五指用電量節(jié)約了25%單位“1”是“去年用電量”2二探究新知解題思路:去年:單位“1”今年:比去年少25%即(1-25%)今年用電量=去年用電量×(1-25%)二探究新知

某工廠去年用電35萬千瓦時,今年比去年節(jié)電二成五,今年用電多少萬千瓦時?35×(1-25%)=262.5(萬千瓦時)答:今年用電262.5萬千瓦時。2列式解答:你還有其他的解題方法嗎?對應練習

某市212年出境旅游人數(shù)為15人次,比上一年增長兩成。該市211年出境旅游人數(shù)為多少人次?做一做優(yōu)翼對應練習

你能找出題中的等量關(guān)系式嗎?211年出境旅游人數(shù)×(1+2%)=212年出境旅游人數(shù)15÷(1+2%)=125(人次)答:該市211年出境旅游人數(shù)為125人次。想一想三課堂小結(jié)“成數(shù)”有關(guān)的實際問題:1.幾成表示百分之幾十,幾成幾就是百分之幾十幾。2.解決有關(guān)成數(shù)的問題時,要先把成數(shù)化成百分數(shù)。3.解題思路和解題方法與解決百分數(shù)的應用題相同。四鞏固練習1.某縣前年秋糧產(chǎn)量為2.8萬噸,去年比前年增產(chǎn)三成。去年秋糧產(chǎn)量是多少萬噸?2.8×(1+3%)=3.64(萬噸)答:去年秋糧產(chǎn)量是3.64萬噸。P13T4優(yōu)翼前年糧食產(chǎn)量×(1+3%)=去年糧食產(chǎn)量四鞏固練習P13T5優(yōu)翼2.某汽車出口公司二月份出口汽車1.3萬輛,比上月增長三成。一月份出口汽車多少萬輛?1.3÷(1+3%)=1(萬輛)答:一月份出口汽車1萬輛。一月份出口汽車數(shù)量×(1+3%)=二月份出口汽車數(shù)量第3課時稅率百分數(shù)(二)2一情境導入一情境導入稅收是國家收入的主要來源之一。國家用收來的稅款發(fā)展經(jīng)濟、科技、教育、文化和國防等事業(yè)。二探究新知

納稅是根據(jù)國家稅法的有關(guān)規(guī)定,按照一定的比率把集體或個人收入的一部分繳納給國家。消費稅、增值稅、個人所得稅等幾類。你知道哪些稅收項目?繳納的稅款叫做應納稅額,應納稅額與各種收入(銷售額、營業(yè)額……)中應納稅部分的比率叫做稅率。二探究新知

一家飯店1月份的營業(yè)額中應納稅的部分是3萬元。如果按應納稅部分的3%繳納增值稅,這家飯店1月份應繳納增值稅多少萬元?3應納稅額=收入中應納稅部分×稅率3×3%=.9(萬元)答:1月份應繳納增值稅.9萬元。三鞏固練習1.李老師為某雜志審稿,得到3元審稿費。為此她需要按照3%的稅率繳納個人所得稅,她應繳納個人所得稅多少元?3×3%=9(元)答:她應繳納個人所得稅9元。P14T6優(yōu)翼P14T7優(yōu)翼2.媽媽買了一瓶售價為1元的化妝品,其中消費稅大約占售價的25%。媽媽為此支付消費稅大約多少元?1×25%=25(元)答:媽媽為此支付消費稅大約25元。三鞏固練習四拓展練習1.根據(jù)我國稅法規(guī)定,個人工資扣除社保、各項專項及附加等后超過5元的部分要繳納個人所得稅。級數(shù)超過部分稅率/%1未超過3元的部分32超過3-12元的部分13超過12-25元的部分2......李阿姨的月工資扣除社保、各項專項及附加等后是6元,李阿姨每月應繳納個人所得稅多少元?

(6-5)×3%=3(元)答:她應繳個人所得稅3元。四拓展練習四課堂小結(jié)“稅率”有關(guān)的實際問題:1.應納稅額與各種收入中應納稅部分的比率叫做稅率。稅率=

應納稅額收入中應納稅部分

2.第4課時利率百分數(shù)(二)2一情境導入你怎樣打理你的壓歲錢?存入存錢罐交給父母保管一情境導入你的父母又是怎樣打理自己的錢呢?存入銀行放入保險箱二探究新知人們常常把暫時不用的錢存入銀行儲蓄起來。儲蓄不僅可以支援國家建設(shè),也使得個人錢財更安全,還可以增加一些收入。二探究新知你知道銀行存款有哪些方式嗎?有活期、整存整取、零存整取等。二探究新知

存入銀行的錢叫做本金;取款時銀行多支付的錢叫做利息;單位時間(如1年、1月、1日等)內(nèi)的利息與本金的比率叫做利率。利息=本金×利率×存期二探究新知本金

在下面這張存折中找出本金,利息,利率。利息

利率二探究新知215年1月中國人民銀行公布的存款利率活期整存整取存期三個月六個月一年二年三年年利率(%).351.11.32.12.751.5二探究新知4除了本金,還有一些利息。取回的錢=本金+利息本金×利率×存期

215年11月,王奶奶把5元錢存入銀行。二探究新知4

215年11月,王奶奶把5元錢存入銀行。方法一:根據(jù)利息公式“利息=本金×利率×存期”,先算出利息,再用本金加利息就是到期后取出來的錢。5×2.1%×2=21(元)5+21=521(元)二探究新知4方法二:把本金看作單位“1”。因為年利率為2.1%,存期為兩年,所以所得利息占本金的2.1%×2,由此可以知道取出的總錢數(shù)就占本金的(1+2.1%×2)。5×(1+2.1%×2)=5×(1+.42)=5×1.42=521(元)答:到期時王奶奶可以取回521元。

215年11月,王奶奶把5元錢存入銀行。三對應練習215年11月,張爺爺把兒子寄來的8元錢存入銀行,存期為3年,年利率為2.75%。到期支取時,張爺爺可得到多少利息?到期時張爺爺一共能取回多少錢?8×2.75%×3=66(元)利息=本金×利率×存期答:張爺爺可得到66元的利息,一共能取回866元。8+66=866(元)四課堂小結(jié)利息的計算1.利息的計算公式:利息=本金×利率×存期。2.到期后取回的錢數(shù)=本金+利息。五鞏固練習1.下面是張叔叔215年11月1日到銀行存款時填寫的存款憑證。到期時張叔叔可以取回多少錢?P14T9優(yōu)翼五鞏固練習3+3×1.3%×.5=319.5(元)答:到期時張叔叔可以取回319.5元錢。P14T9優(yōu)翼取回的錢=本金+本金×利率×存期六拓展練習1.小王把1元存入銀行,兩年后取出,本息共142元,年利率是多少?本金+本金×利率×存期=取回的總錢數(shù)解:設(shè)年利率是x。1+1×2x=142

x=.21=2.1%答:年利率是2.1%。六拓展練習2.媽媽每月工資2元,如果媽媽把半年的工資全部存入銀行,定期半年,如果年利率是1.3%,到期后她可以取回多少元?2×6+2×6×1.3%×.5=1278(元)答:到期后她可以取回1278元。本金+本金×利率×存期=取回的總錢數(shù)第5課時解決問題百分數(shù)(二)2一復習導入1.爸爸想買一件原價4元的襯衫,八折之后這件襯衫多少錢?4×8%=32(元)答:八折之后這件襯衫32元。原價×8%=現(xiàn)價8%一復習導入2.媽媽這個月工資由原來的5元漲了二成五,媽媽現(xiàn)在工資是多少?5×(1+25%)=625(元)答:媽媽現(xiàn)在工資是625元。25%二探究新知

某品牌的裙子搞促銷活動。媽媽要買一條標價23元的這種品牌的裙子。(1)在A、B兩個商場買,各應付多少錢?(2)選擇哪個商場更省錢?5每二探究新知閱讀與理解“每滿1元減5元”是什么意思?就是在總價中取整百元部分,每個1元減去5元。不滿1元的零頭部分不優(yōu)惠。每二探究新知在A商場買應付多少錢?23×5%=115(元)在A商場買,直接用總價乘5%就能算出實際花費。分析與解答二探究新知分析與解答在B商場買應付多少錢?23-5×2=13(元)在B商場買,先看總價中有幾個1,23里有2個1;然后從總價中減去2個5元。二探究新知分析與解答選擇哪個商場更省錢?115<13選擇A商場更省錢。

在A商場買的實際花費:

23×5%=115(元)在B商場買的實際花費:

23-5×2=13(元)二探究新知回顧與反思看起來每滿1元減5元不如打五折實惠。答:在A商場買應付115元,在B商場買應付13元:選擇A商場更省錢。如果總價能湊成整百多一點就相差不多了。三對應練習1.某品牌的旅游鞋搞促銷活動,在A商場按“每滿1元減4元”的方式銷售,在B商場打六折銷售。媽媽準備給小麗買一雙標價12元的這種品牌的旅游鞋。(1)在A、B兩個商場買,各應付多少錢?(2)選擇哪個商場更省錢?做一做優(yōu)翼三對應練習(1)A商場:12-4=8(元)B商場:12×6%=72(元)答:在A商場應付8元,在B商場應付72元。(2)72<8答:選擇B商場更省錢。四鞏固練習1.百貨大樓搞促銷活動,甲品牌鞋每滿2元減1元,乙品牌鞋“折上折”,就是先打六折,在此基礎(chǔ)上再打九五折。如果兩個品牌都有一雙標價26元的鞋,哪個品牌的更便宜?P15T13優(yōu)翼四鞏固練習甲品牌:26-1=16(元)乙品牌:26×6%×95%=148.2(元)148.2<16

答:乙品牌更便宜。P15T13優(yōu)翼四鞏固練習2.爸爸想在網(wǎng)上書店買書,A店打七折銷售,B店滿69元減19元。如果爸爸想買的書標價為8元。(1)在A、B兩個書店買,各應付多少元?(2)在哪個書店買更省錢?A、B兩店的價格相差多少錢?P15T14優(yōu)翼四鞏固練習(1)A:8×7%=56(元)B:8-19=61(元)答:在A店買應付56元,在B店買應付61元。(2)56<6161-56=5(元)答:在A店買更省錢,A、B兩店的價格相差5元。P15T14優(yōu)翼第1課時圓柱的認識(1)圓柱與圓錐3長方形正方形圓形平行四邊形三角形梯形這些是平面圖形。一情境導入正方體長方體圓柱體圓錐體這些是立體圖形。一情境導入這些物體的形狀有什么共同特點?二探究新知圓柱在生活中的,你還見過那些圓柱形的物體?二探究新知二探究新知茶葉用手摸一摸圓柱的整個表面,同桌之間說說你的感受。兩個平面一個曲面二探究新知底面底面圓柱的上、下兩個面叫做圓柱的底面。它們是完全相同的兩個圓。二探究新知圓柱周圍的面(上、下底面除外)叫做側(cè)面

用手摸一摸圓柱的周圍,你發(fā)現(xiàn)什么?二探究新知兩個圓柱有什么不同?高高圓柱兩個底面之間的距離叫做高,OOOO側(cè)面?zhèn)让娴酌娴酌娴酌娴酌娑骄啃轮獔A柱有無數(shù)條高。在生活中,圓柱的高會有不同的稱呼,

你知道嗎?厚深長二探究新知

如果把一張長方形的硬紙貼在木棒上,快速轉(zhuǎn)動木棒,想一想,轉(zhuǎn)出來的是什么形狀?轉(zhuǎn)動起來像一個圓柱。動手做一做優(yōu)翼二探究新知1.指出下面圓柱的底面、側(cè)面和高。高高高底面?zhèn)让娴酌鎮(zhèn)让娴酌娴酌鎮(zhèn)让娴酌娴酌孀鲆蛔鰞?yōu)翼三對應練習2.轉(zhuǎn)動長方形ABCD,生成右面的兩個圓柱。說說它們分別是以長方形的哪條邊為軸旋轉(zhuǎn)而成的,底面半徑和高分別是多少。(1)(2)ABCD2cm1cm做一做優(yōu)翼三對應練習(1)(2)答:長方形ABCD如果以AB邊為軸旋轉(zhuǎn),會形成(1)號圓柱。底面半徑是2cm,高是1cm。長方形ABCD如果以AD邊為軸旋轉(zhuǎn),會形成(2)號圓柱。底面半徑是1cm,高是2cm。做一做優(yōu)翼ABCD2cm1cm三對應練習四課堂小結(jié)圓柱高底面:完全相同的兩個圓。側(cè)面:曲面。高:無數(shù)條,都相等。底面底面?zhèn)让嫖屐柟叹毩?.下面的圖形哪些是圓柱?在下面的()里畫“?”?!獭獭蘌2T1優(yōu)翼2.折一折,想一想,能得到什么圖形?寫在()里。長方體正方體圓柱()()()五鞏固練習P2T2優(yōu)翼第2課時圓柱的認識(2)圓柱與圓錐3一復習導入你想知道圓柱的展開圖是什么樣子的嗎?你們還記得長方體的展開圖嗎?二探究新知(1)圓柱的側(cè)面展開后是什么形狀?把罐頭盒的商標紙如下圖所示那樣剪開,再展開。圓柱的側(cè)面展開后得到一個長方形。2二探究新知(2)把這個長方形重新包在圓柱上,你能發(fā)現(xiàn)什么?2二探究新知底面底面2(2)這個長方形的長、寬與圓柱有什么關(guān)系?二探究新知2(2)這個長方形的長、寬與圓柱有什么關(guān)系?底面的周長高二探究新知底面底面高底面的周長底面底面底面的周長高長方形的長等于圓柱底面的周長,寬等于圓柱的高。三對應練習做一做優(yōu)翼1.下面是同一個圓柱的展開圖,說一說每個圖是怎樣展開的。沿著側(cè)面上一條高展開的沿著側(cè)面上一條曲線展開的沿著側(cè)面上一條斜線展開的三對應練習做一做優(yōu)翼2.一個圓柱形茶葉筒的側(cè)面貼著商標紙,圓柱底面半徑是5cm,高是2cm。這張商標紙展開后是一個長方形,它的長和寬各是多少厘米?長:2×5×3.14=1×3.14=31.4(cm)寬:2cm

長方形的長等于圓柱底面的周長,寬等于圓柱的高。四課堂小結(jié)底面底面高底面的周長底面底面底面的周長高底面周長長方形的長圓柱的高長方形的寬五鞏固練習

1.如圖,切完后的截面或剪完后展開的側(cè)面分別是什么形狀?連一連。P2T4優(yōu)翼第3課時圓柱的表面積(1)圓柱與圓錐31.圓柱有()個底面,它們是(),有()側(cè)面,

是(),有()條高,這些高都()。2.圓柱的側(cè)面展開是(),

長方形的長等于(),寬是()。

大小一樣的圓曲面無數(shù)長度相等長方形或正方形底面周長高21個一復習導入3.圓的面積公式=

4.圓的周長公式=5.長方形的面積公式=

或長×寬一復習導入二探究新知3圓柱的表面積指的是什么?二探究新知底面底面高底面的周長底面底面底面的周長高在前面的學習中,我們已經(jīng)知道圓柱的展開圖。圓柱的表面積=圓柱的側(cè)面積+兩個底面的面積二探究新知圓柱的側(cè)面是曲面,但是展開后是一個長方形。你會計算圓柱的側(cè)面積嗎?

二探究新知高底面的周長側(cè)面底面的周長高圓柱的側(cè)面積=長方形的面積=長×寬

=圓柱的底面周長×高C=πd=2πr=2πrh圓柱的側(cè)面積=底面周長×高二探究新知現(xiàn)在,你會求圓柱的表面積了嗎?圓柱的表面積=圓柱的側(cè)面積+底面積×2S表=2πrh+2πr2底面底面高底面的周長底面底面底面的周長高三對應練習做一做優(yōu)翼答:這張商標紙的面積是628cm2

。1.一個圓柱形茶葉筒的側(cè)面貼著商標紙,圓柱底面半徑是5cm,高是2cm。這張商標紙的面積是多少?2×3.14×5×2=628(cm2

)側(cè)面積S側(cè)=2πrh四鞏固練習1.求下列各圓柱的表面積。(單位:cm)側(cè)面積:3.14×6×12=226.8(cm2)底面積:3.14×(6÷2)2=28.26(cm2)表面積:226.8+28.26×2=282.6(cm2)P23T1優(yōu)翼側(cè)面積:3.14×4×3=376.8(cm2)底面積:3.14×(4÷2)2=1256(cm2)表面積:376.8+1256×2=2888.8(cm2)四鞏固練習P23T1優(yōu)翼側(cè)面積:3.14×18×15=847.8(cm2)底面積:3.14×(18÷2)2=254.34(cm2)表面積:847.8+254.34×2=1356.48(cm2)四鞏固練習P23T1優(yōu)翼2.一臺壓路機的前輪是圓柱形,輪寬2m,直徑1.2m。前輪轉(zhuǎn)動一周,壓路的面積是多少平方米?3.14×1.2×2=7.536(m2)答:壓路的面積是7.536平方米。四鞏固練習P23T2優(yōu)翼側(cè)面積S側(cè)=2πrh=πdh四鞏固練習P24T12優(yōu)翼3.一個圓柱的側(cè)面積是188.4dm2,底面半徑是2dm。它的高是多少?188.4÷(2×3.14×2)=15(dm)答:它的高是15dm。h=S側(cè)÷2πrS側(cè)=2πrh=πdh五拓展練習P24T13優(yōu)翼1.一根圓柱形木料的底面半徑是.3m,長是2m。如圖所示,將它截成4段,這些木料的表面積比原木料增加了多少平方米?3.14×.32×6=1.6956(平方米)答:這些木料的表面積比原木料增加了1.6956平方米。多6個面五拓展練習P24T14優(yōu)翼2.一個圓柱的側(cè)面展開圖是一個正方形,求這個圓柱的底面直徑與高的比。πd=hd∶h=1∶πdhhh圓柱的側(cè)面展開后,正方形的邊長等于圓柱的底面周長,也就是圓柱的高等于等于圓柱的底面周長。第4課時圓柱的表面積(2)圓柱與圓錐3一復習導入一個圓柱的底面半徑是4dm,高是5dm。求它的表面積。圓柱的表面積=圓柱的側(cè)面積+底面積×2底面周長×高一復習導入一個圓柱的底面半徑是4dm,高是5dm。求它的表面積。底面積:3.14×42=5.24(dm2)表面積:125.6+5.24×2=226.8(dm2)答:它的表面積是226.8dm2。側(cè)面積:2×3.14×4×5=125.6(dm2)二探究新知4一頂圓柱形廚師帽,高3cm,帽頂直徑2cm。做這樣一頂帽子至少要用多少平方厘米的面料?(得數(shù)保留整十數(shù)。)二探究新知求至少要用多少面料,就是求帽子的表面積。帽子的表面積=帽子的側(cè)面積+帽頂面積二探究新知(1)帽子的側(cè)面積:3.14×2×3=1884(cm2)(2)帽頂?shù)拿娣e:3.14×(2÷2)2=314(cm2)(3)需要用的面料:1884+314=2198≈22(cm2)答:做這樣一頂帽子至少要用22cm2的面料。二探究新知為什么用“進一法”取近似數(shù)?實際使用的面料要比計算的結(jié)果多一些,所以這類問題往往用“進一法”取近似數(shù)。想一想二探究新知想一想如果一段圓柱形的木頭,截成兩截,它的表面積會有什么變化呢?

增加2個截面(底面圓)面積三對應練習做一做優(yōu)翼1.求下面各圓柱的側(cè)面積。(1)底面周長是1.6m,高是.7m。1.6×.7=1.12(m2)答:圓柱的側(cè)面積是1.12m2。三對應練習(2)底面半徑是3.2dm,高是5dm。2×3.14×3.2×5=1.48(dm2

)答:圓柱的側(cè)面積是1.48dm2。做一做優(yōu)翼三對應練習

2.小亞做了一個筆筒,她想給筆筒的側(cè)面和底面貼上彩紙,至少需要多少彩紙?8cm

13cm

做一做優(yōu)翼

表面積筆筒的側(cè)面積+筆筒的一個底面積三對應練習側(cè)面:3.14×8×13=326.56(cm2)底面:3.14×(8÷2)2=5.24(cm2)側(cè)面積:326.56+5.24=376.8(cm2)答:至少需要376.8cm2彩紙。做一做優(yōu)翼四課堂小結(jié)

解決圓柱表面積計算的有關(guān)問題時,并不是所有的圓柱形物體都有兩個底面,有的有一個底面,有的沒有底面,如圓柱形水管。解題時要根據(jù)實際情況選擇恰當?shù)慕忸}方法。五鞏固練習1.一頂帽子,上面是圓柱形,用黑布做;帽檐部分是一個圓環(huán),用紅布做。做這頂帽子,哪種顏色的布用得多?P23T7優(yōu)翼黑布:圓柱的側(cè)面積+一個底面積紅布:大圓的面積-一個底面積黑布:3.14×2×1+3.14×(2÷2)2=942(cm2)紅布:3.14×[(1+2÷2)2-(2÷2)2]=942(cm2)答:兩種顏色的布用得一樣多。五鞏固練習P23T7優(yōu)翼六拓展練習P24T9優(yōu)翼1.林叔叔做了一個圓柱形的燈籠(如圖)。上下底面的中間分別留出了78.5cm2的口,他用了多少彩紙?彩紙:圓柱的表面積-上、下底面的中間的圓六拓展練習P24T9優(yōu)翼側(cè)面:3.14×2×3=1884(cm2)底面:3.14×(2÷2)2=314(cm2)用的彩紙:1884+314×2-78.5×2=2355(cm2)答:他用了2355cm2彩紙。六拓展練習P24T1優(yōu)翼2.一個圓柱形鐵皮水桶(無蓋),高12dm,底面直徑是高的。做這個水桶大約要用多少鐵皮?表面積=圓柱的側(cè)面積+一個底面積表面積=πdh+πr2?12×=9(dm)六拓展練習P24T1優(yōu)翼12×=9(dm)直徑:側(cè)面積:3.14×9×12=339.12(dm2)底面積:3.14×(9÷2)2=63.585(dm2)339.12+63.585=42.75(dm2)答:做這個水桶大約要用42.75dm2鐵皮。第5課時圓柱的體積(1)圓柱與圓錐3一復習導入⑴圓柱的側(cè)面積=()底面周長×高⑵圓柱的表面積=()側(cè)面積+底面積×2⑶長方體的體積=()長×寬×高=()底面積×高(4)正方體的體積=()棱長×棱長×棱長圓柱的體積是什么?圓柱所占空間的大小叫圓柱的體積。二探究新知你會計算圓柱體的體積嗎?二探究新知把圓柱的底面分成許多相等的扇形。把圓柱切開,再像這樣拼起來,得到一個近似的長方體。5二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知二探究新知分成的扇形越多,拼成的立體圖形就越接近于長方體。二探究新知把拼成的長方體與原來的圓柱比較,你能發(fā)現(xiàn)什么?二探究新知圓柱的體積于等長方體的體積。長方體的高等于圓柱的高。長方體的底面積等于圓柱的底面積。二探究新知圓柱的體積=底面積×高長方體的體積=底面積×

高V=S×h二探究新知V=sh=πr2h如果知道圓柱的底面半徑r和高,你能寫出圓柱的體積公式嗎?P28T1優(yōu)翼三對應練習1.計算下面各圓柱的體積。(單位:cm)3.14×52×2=157(cm3)

V=sh=πr2hP28T1優(yōu)翼1.計算下面各圓柱的體積。(單位:cm)3.14×(4÷2)2×12=15.72(cm3)三對應練習

V=sh=πr2h

V=π2hP28T1優(yōu)翼1.計算下面各圓柱的體積。(單位:cm)3.14×(8÷2)2×8=41.92(cm3)三對應練習

V=π2h四鞏固練習做一做優(yōu)翼1.一個圓柱形木料,底面積為75cm2,長9cm。它的體積是多少?75×9=675(cm3)答:它的體積是675cm3。

V=sh高四鞏固練習做一做優(yōu)翼2.李家莊挖了一口圓柱形水井,地面以下的井深1m,底面直徑為1m。挖出的土有多少立方米?

3.14×.52×1=7.85(立方米)答:挖出的土有7.85立方米。圓柱的體積V=sh=πr2h?h體積單位dr=1÷2=.5(米)3.學校建了兩個同樣大小的圓柱形花壇?;▔牡酌鎯?nèi)直徑為3m,高為.8m。如果里面填土的高度是.5m,兩個花壇中共需要填土多少立方米?P28T3優(yōu)翼四鞏固練習體積單位圓柱的體積V=sh=πr2hdhr=3÷2=1.5(m)3.學校建了兩個同樣大小的圓柱形花壇。花壇的底面內(nèi)直徑為3m,高為.8m。如果里面填土的高度是.5m,兩個花壇中共需要填土多少立方米?P28T3優(yōu)翼四鞏固練習體積單位dh3.14×(3÷2)2×.5=3.5325(m3)3.5325×2=7.65(m3)答:兩個花壇中共需要填土7.65立方米。五拓展練習P3T14優(yōu)翼1.右面這個長方形的長是2cm,寬是1cm。分別以長和寬為軸旋轉(zhuǎn)一周,得到兩個圓柱體。它們的體積各是多少?以長為軸旋轉(zhuǎn)一周,即底面半徑是1cm;以寬為軸旋轉(zhuǎn)一周,即底面半徑為2cm。五拓展練習P3T14優(yōu)翼1.右面這個長方形的長是2cm,寬是1cm。分別以長和寬為軸旋轉(zhuǎn)一周,得到兩個圓柱體。它們的體積各是多少?以長為軸旋轉(zhuǎn)一周:3.14×12×2=628(cm3)以寬為軸旋轉(zhuǎn)一周:3.14×22×1=1256(cm3)答:以長為軸旋轉(zhuǎn)一周的體積是628cm3,以寬為軸旋轉(zhuǎn)一周的體積是1256cm3。五拓展練習P3T15優(yōu)翼2.下面4個圖形的面積都是36dm2。用這些圖形分別卷成圓柱,哪個圓柱的體積最???哪個圓柱的體積最大?你有什么發(fā)現(xiàn)?(單位:dm)五拓展練習P3T15優(yōu)翼第一個以18dm為底面周長圍成圓柱的體積:3.14×(18÷3.14÷2)2×2≈51.59(dm3)或以2dm為底面周長圍成圓柱的體積:3.14×(2÷3.14÷2)2×18≈5.73(dm3)第二個以12dm為底面周長圍成圓柱的體積:3.14×(12÷3.14÷2)2×3≈34.39(dm3)或以3dm為底面周長圍成圓柱的體積:3.14×(3÷3.14÷2)2×12≈8.6(dm3)五拓展練習P3T15優(yōu)翼第三個以9dm為底面周長圍成圓柱的體積:3.14×(9÷3.14÷2)2×4≈25.8(dm3)或以4dm為底面周長圍成圓柱的體積:3.14×(4÷3.14÷2)2×9≈11.46(dm3)第四個以6dm為底面周長圍成圓柱的體積:3.14×(6÷3.14÷2)2×6≈17.2(dm3)答:以18dm為底面周長,圓柱體積最大,以2dm為底面周長,圓柱體積最小。結(jié)論:圓柱側(cè)面積相等時,底面的半徑越長,它的體積越大,反之越小。第6課時圓柱的體積(2)圓柱與圓錐3一復習導入1.一個圓柱底面直徑6分米,高8分米。求它的體積。3.14×(6÷2)2×8=226.8(立方分米)答:它的體積是226.8立方分米。一復習導入2.一個圓柱底面周長12.56厘米,高6厘米。求它的體積。3.14×(12.56÷3.14÷2)2×6=75.36(立方厘米)答:它的體積是75.36立方厘米。V=π2h二探究新知下圖中的杯子能不能裝下這袋牛奶?(數(shù)據(jù)是從杯子里面測量得到的。)68cm

1cm

二探究新知68cm

1cm

要回答這個問題,先要計算出什么?杯子的容積容積的計算方法與體積的計算方法相同。二探究新知8cm

1cm

杯子的底面積:3.14×(8÷2)2=3.14×42

=3.14×16=5.24(cm2)杯子的容積:

5.24×1=52.4(cm3)=52.4(mL)

答:因為52.4大于498,所以杯子能裝下這袋牛奶。三對應練習做一做優(yōu)翼1.小明和媽媽出去游玩,帶了一個圓柱形保溫杯,從里面量底面直徑是8cm,高是15cm。如果兩人游玩期間要喝1L水,帶這杯水夠喝嗎?保溫杯的底面積:3.14×(8÷2)2=5.24(cm2)保溫杯的容積:5.24×15=753.6(cm3)

753.6cm3

=.7536L.7536<1

答:帶這杯水不夠喝。杯子的容積三對應練習做一做優(yōu)翼2.一根圓柱形木料底面直徑是.4m,長5m。如果做一張課桌用去木料.2m3。這根木料最多能做多少張課桌?3.14×(.4÷2)2×5=.628(m3).628÷.2=31.4≈31(張)答:這根木料最多能做31張課桌。P28T5優(yōu)翼四鞏固練習1.一個圓柱形糧囤,從里面量得底面半徑是1.5m,高2m。如果每立方米玉米約重75kg,這個糧囤能裝多少噸玉米?3.14×1.52×2×75=1597.5(千克)1597.5(千克)=1.5975(噸)答:這個糧囤能裝1.5975噸玉米。P29T11優(yōu)翼五拓展練習1.一種電熱水爐的水龍頭的內(nèi)直徑是1.2cm,打開水龍頭后水的流速是2厘米/秒。一個容積為1L的保溫壺,5秒能裝滿水嗎?3.14×(1.2÷2)2×2×5=113.4(cm3)113.4cm3>1cm3=1L答:5秒能裝滿水。圓柱水龍頭5秒水的容積和保溫壺的體積比較P29T12優(yōu)翼五拓展練習2.下面是一根鋼管,求它所用鋼材的體積。(單位:cm)空心圓柱鋼材的體積=外面大圓柱的體積-里面中空的小圓柱的體積=S外h-S內(nèi)h=(S外-S內(nèi))h鋼管的底面,它是一個圓環(huán),鋼材的體積=圓環(huán)的面積×高。P29T12優(yōu)翼五拓展練習2.下面是一根鋼管,求它所用鋼材的體積。(單位:cm)空心圓柱3.14×[(1÷2)2-(8÷2)2]×8=226.8(cm3)

答:它所用鋼材的體積是226.8cm3。第7課時解決問題圓柱與圓錐3求下面各圓柱的體積。(只列式不計算)(1)底面半徑是3厘米,高是5厘米。(2)底面直徑是8米,高是1米。(3)底面周長是25.12分米,高是2分米。3.14×32×53.14×(8÷2)2×13.14×(25.12÷3.14÷2)2×2一復習導入7

一個內(nèi)直徑是8cm的瓶子里,水的高度是7cm,把瓶蓋擰緊倒置放平,無水部分是圓柱形,高度是18cm。這個瓶子的容積是多少?7cm

18cm

二探究新知二探究新知這個瓶子不是一個完整的圓柱,無法直接計算容積。閱讀與理解能不能轉(zhuǎn)化成圓柱呢?瓶子里的水倒置后,水的體積沒變。18cm水的體積加上18cm高圓柱的體積就是瓶子的容積。分析與解答二探究新知也就是把瓶子的容積轉(zhuǎn)化成了兩個圓柱的體積。7cm

18cm

答:這個瓶子的容積是1256mL。瓶子的容積:3.14×(8÷2)2×7+3.14×(8÷2)2×18=3.14×16×(7+18)=3.14×16×25=1256(cm3)=1256(mL)二探究新知你還能想到別的方法嗎?7cm

18cm

想一想二探究新知7cm

18cm

12圖1中的空氣與圖2中的空氣體積相等,把圖2中的空氣換到圖1上,如下圖,就能形成一個規(guī)則的圓柱。二探究新知7cm

18cm

瓶子的容積:3.14×(8÷2)2×(7+18)=3.14×16×25=1256(cm3)=1256(mL)答:這個瓶子的容積是1256mL。二探究新知我們利用了體積不變的特性,把不規(guī)則圖形轉(zhuǎn)化成規(guī)則圖形來計算。在五年級計算梨的體積時也是用了轉(zhuǎn)化的方法?;仡櫯c反思二探究新知1.一瓶裝滿的礦泉水,小明喝了一些,把瓶蓋擰緊后倒置放平,無水部分高1cm,內(nèi)徑是6cm。小明喝了多少水?3.14×(6÷2)2×1=3.14×9×1=282.6(cm3)=282.6(mL)答:小明喝了282.6mL的水。三對應練習做一做優(yōu)翼1cm1.明明家里來了兩位小客人,媽媽沖了1L果汁。如果用圖中的玻璃杯喝果汁,夠明明和客人每人一杯嗎?3.14×(6÷2)2×11×(1+2)=932.58(cm3)=932.58(mL)1L=1mL932.58<1答:夠明明和客人每人一杯。四鞏固練習P29T8優(yōu)翼2.小雨家有6個底面積是3cm2、高1cm的圓柱形水杯,沏一壺茶水能倒?jié)M4杯。有一天來了6位客人,如果讓6位客人都能喝上這壺茶水,平均每杯倒多少毫升?3×1×4÷6=2(cm3)=2mL答:平均每杯倒2毫升。這壺水的容積÷人數(shù)=平均每杯水的容積四鞏固練習P29T13優(yōu)翼第8課時圓錐的認識圓柱與圓錐3優(yōu)翼文化二探究新知上面這些物體的形狀有什么共同的特點?二探究新知這些物體的形狀都是圓錐體,簡稱圓錐。二探究新知你還見過哪些圓錐形的物體?二探究新知拿一個圓錐形的物體,觀察它有哪些特征。頂點底面圓錐的底面是個圓。1二探究新知側(cè)面圓錐的側(cè)面是曲面,展開后是一個扇形。二探究新知Ohr高從圓錐的頂點到底面圓心的距離是圓錐的高。圓錐只有一條高。二探究新知怎樣測量圓錐的高?討論1.測量時,圓錐的底面要水平地放;2.上面的平板要水平放在圓錐的頂點上面;3.測量。二探究新知動手做一做轉(zhuǎn)動起來像一個圓錐。如下圖所示,把一張直角三角形的硬紙貼在木棒上,快速轉(zhuǎn)動木棒,看看轉(zhuǎn)出來的是什么形狀。三對應練習側(cè)面指出下面圓錐的底面、側(cè)面和高。底面?zhèn)让娴酌鎮(zhèn)让娴酌娓吒吒咦鲆蛔鰞?yōu)翼四鞏固練習1.下面圖形以紅色線為軸快速旋轉(zhuǎn)后會形成什么圖形?連一連。P35T2優(yōu)翼四鞏固練習2.判斷題。(1)圓錐的高是指從圓錐的頂點到底面圓心的距離。()(2)在一個圓錐中可以畫出無數(shù)條高。()(3)把圓錐的側(cè)面展開可得到一個圓。()√××五課堂小結(jié)1.圓錐是由一個底面和一個側(cè)面兩部分圍成的。圓錐的底面是一個圓,側(cè)面是一個曲面。2.圓錐只有一條高。第9課時圓錐的體積圓柱與圓錐3說出圓柱和圓錐各部分的名稱及特征:高有無數(shù)條側(cè)面展開后是長方形或正方形底面有兩個底面,是相等的圓形頂點有一個頂點側(cè)面展開后是扇形高

只有一條有一個底面,是圓形底面一復習導入一復習導入圓柱體積的計算公式V=shhdsV=πr2hrV=π()2h2dV=π()2h2πCC我們已經(jīng)會計算圓柱的體積,如何計算圓錐的體積呢?圓柱的底面是圓,圓錐的底面也是圓······圓錐的體積和圓柱的體積有沒有關(guān)系呢?2二新知探究下面通過試驗,探究一下圓錐和圓柱體積之間的關(guān)系。(1)各組準備好等底、等高的圓柱、圓錐形容器。二新知探究等底等高二新知探究(2)用倒沙子或水的方法試一試。二新知探究二新知探究二新知探究二新知探究二新知探究二新知探究二新知探究二新知探究二新知探究你發(fā)現(xiàn)圓錐的體積與同它等底、等高的圓柱的體積之間的關(guān)系了嗎?實驗器材

實驗過程

①在空圓柱里裝滿沙倒入空圓錐里,()次,正好倒完。

①在空圓錐里裝滿沙倒入空圓柱里,()次正好裝滿。結(jié)論②圓柱的體積是和它等底等高的圓錐體積的()倍

圓錐體積計算公式V=

②圓錐的體積是和它等底等高的圓柱體積的實驗報告表3333131S

h二新知探究一桶沙、等底等高的圓柱和圓錐各一個V=sh13V圓柱=sh圓錐的體積V等于和它等底等高的圓柱體積的三分之一二新知探究底面積和高底面半徑和高底面直徑和高底面周長和高圓錐體積計算圓錐的體積所必須的條件可以是:V=sh13二新知探究圓錐在生活中的應用二新知探究

工地上有一堆沙子,近似于一個圓錐(如下圖)。這堆沙子的體積大約是多少?如果每立方米沙子重1.5t,這堆沙子大約重多少噸?4m

1.5m

3求沙子的體積就是求圓錐的體積。V=sh?底面直徑高二新知探究

工地上有一堆沙子,近似于一個圓錐(如下圖)。這堆沙子的體積大約是多少?如果每立方米沙子重1.5t,這堆沙子大約重多少噸?4m

1.5m

3(1)沙堆底面積:3.14×(4÷2)2=3.14×4=12.56(m2)底面直徑高二新知探究

工地上有一堆沙子,近似于一個圓錐(如下圖)。這堆沙子的體積大約是多少?如果每立方米沙子重1.5t,這堆沙子大約重多少噸?4m

1.5m

3(2)沙堆的體積:×12.56×1.5=6.28(m3)底面直徑高二新知探究

工地上有一堆沙子,近似于一個圓錐(如下圖)。這堆沙子的體積大約是多少?如果每立方米沙子重1.5t,這堆沙子大約重多少噸?4m

1.5m

3求體積的1.5倍是多少。6.28×1.5=9.42(t)(3)沙堆重:底面直徑高二新知探究(2)沙堆的體積:(1)沙堆底面積:6.28×1.5=9.42(t)(3)沙堆重:答:這堆沙子的體積大約是6.28m3,這堆沙子大約重9.42噸。3.14×(4÷2)2=3.14×4=12.56(m2)×12.56×1.5=6.28(m3)二新知探究三對應練習做一做優(yōu)翼1.一個圓錐形的零件,底面積是19cm2,高12cm。這個零件的體積是多少?答:這個零件的體積是76cm3?!?9×12=76(cm3)

V圓錐=Sh三對應練習做一做優(yōu)翼2.一個用鋼鑄造成的圓錐形鉛錘,底面直徑是4cm,高5cm。每立方厘米鋼大約重7.8g。這個鉛錘重多少克?(得數(shù)保留整數(shù)。)(1)鉛錘底面積:3.14×(4÷2)2=3.14×4=12.56(cm2)

鉛錘的體積×每立方厘米鋼的質(zhì)量三對應練習做一做優(yōu)翼2.一個用鋼鑄造成的圓錐形鉛錘,底面直徑是4cm,高5cm。每立方厘米鋼大約重7.8g。這個鉛錘重多少克?(得數(shù)保留整數(shù))鉛錘的體積×每立方厘米鋼的質(zhì)量(2)鉛錘的體積:×12.56×5≈2.93(cm3)三對應練習做一做優(yōu)翼2.一個用鋼鑄造成的圓錐形鉛錘,底面直徑是4cm,高5cm。每立方厘米鋼大約重7.8g。這個鉛錘重多少克?(得數(shù)保留整數(shù))鉛錘的體積×每立方厘米鋼的質(zhì)量2.93×7.8≈163(g)(3)鉛錘的質(zhì)量:答:這個鉛錘大約重163g。四鞏固練習1.(1)一個圓柱的體積是75.36m3,與它等底等高的圓錐的體積是()m3。(2)一個圓錐的體積是141.3m3,與它等底等高的圓柱的體積是()m3。25.12423.9P35T4優(yōu)翼圓錐的體積是與它等底等高的圓柱的。四鞏固練習P35T5優(yōu)翼2.判斷對錯,對的畫“√”,錯的畫“×”。(1)圓錐的體積等于圓柱體積的。()(2)圓柱的體積大于與它等底等高的圓錐的體積。()(3)圓錐的高是圓柱的高的3倍,它們的體積一定相等體積。()×√×不是等底等高不是等底五拓展練習1.一個圓錐的底面周長是31.4cm,高是9cm。它的體積是多少?×3.14×(31.4÷3.14÷2)2×9=235.5(cm3)13答:它的體積是235.5cm3。P35T6優(yōu)翼V圓錐=ShV=π()2h2πC2.一堆煤成圓錐形,高2m,底面周長為18.84m。這堆煤的體積大約是多少?已知每立方米的煤約重1.4t,這堆煤大約重多少噸?(得數(shù)保留整數(shù)。)P35T7優(yōu)翼五拓展練習V=π()2h2πC這堆煤的體積×每立方米煤的質(zhì)量五拓展練習×3.14×(18.84÷3.14÷2)2×2

≈19(m3)13答:這堆煤的體積大約是19m3。這堆煤大約重27t。19×1.4≈27(t)第1課時比例的意義比例41.求下面各比的比值。36:721.3:2.68:1836:72=36÷72=.58:18=8÷18=.61.3:2.6=1.3÷2.6=.5.9:1.5.9:1.5=.9÷1.5=.6優(yōu)翼文化一復習導入優(yōu)翼文化二探究新知國旗長2.4m,寬1.6m。國旗長6cm,寬4cm。

國旗長5m,寬m。

上圖中操場上和教室里的兩面國旗長和寬的比值有什么關(guān)系?思考二探究新知教室里的國旗:6:4=操場上的國旗:2.4:1.6=二探究新知教室里的國旗:6:4=操場上的國旗:2.4:1.6=也可以寫成。像這樣表示兩個比相等的式子叫做比例。所以,2.4:1.6=6:4。二探究新知想一想,在上圖的三面國旗的尺寸中,還有哪些比可以組成比例?我發(fā)現(xiàn),這些國旗的長與寬的比都可以組成比例,例如6:4=2.4:1.6=3:2。根據(jù)比例的意義,若兩個比的比值相等,就能組成比例。三對應練習做一做優(yōu)翼1.下面哪組中的兩個比可以組成比例?把組成的比例寫出來。(1)6:1和9:15(2)2:5和1:4因為6:1=.69:15=.6因為2:5=41:4=.25所以6:1=9:15所以不能組成比例。三對應練習做一做優(yōu)翼(3)

和6:4(4).6:.2和所以.6:.2=所以因為因為三對應練習做一做優(yōu)翼2.用圖中的4個數(shù)據(jù)可以組成多少個比例?3:1.5=4:21.5:3=2:43:4=1.5:24:3=2:1.52:1.5=4:31.5:2=3:42:4=1.5:34:2=3:1.58個比例四鞏固練習P43T1優(yōu)翼1.下面各表中相對應的兩個量的比能否組成比例?如果能,把組成的比例寫出來。不能能,2:3=8:12四鞏固練習P43T1優(yōu)翼1.下面各表中相對應的兩個量的比能否組成比例?如果能,把組成的比例寫出來。不能能,5:1=1:2四鞏固練習2.哪組中的四個數(shù)可以組成比例?把組成的比例寫出來。(1)4,5,12和15(2)2,3,4和5不能組成比例4:5=12:15(答案不唯一)P43T2優(yōu)翼四鞏固練習(3)1.6,6.4,2和5不能組成比例P43T2優(yōu)翼(答案不唯一)第2課時比例的基本性質(zhì)比例4優(yōu)翼文化一復習導入1:4=2.5你能寫出幾個比值是2.5的比嗎?15:6=2.58:3.2=2.5你能把它們組成比例嗎?二探究新知2.4:1.6

=6

:4內(nèi)項外項兩端的兩項叫做比例的外項,中間的兩項叫做比例的內(nèi)項。

組成比例的四個數(shù),叫做比例的項。二探究新知2.4:1.6

=6

:4內(nèi)項外項把這個比例寫成分數(shù)形式:2.4和4仍然是外項,1.6和6仍然是內(nèi)項。2.41.6=64二探究新知計算下面比例中兩個外項的積和兩個內(nèi)項的積。比較一下,你能發(fā)現(xiàn)什么?外項積是:2.4×4=961.6×6=962.4:1.6=6:4(1)

內(nèi)項積是:外項積是:內(nèi)項積是:3×15=455×9=451(2)

二探究新知外項積是:2.4×4=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論