遼寧省丹東市振安區(qū)第二十九中學(xué)2022年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第1頁
遼寧省丹東市振安區(qū)第二十九中學(xué)2022年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第2頁
遼寧省丹東市振安區(qū)第二十九中學(xué)2022年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第3頁
遼寧省丹東市振安區(qū)第二十九中學(xué)2022年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第4頁
遼寧省丹東市振安區(qū)第二十九中學(xué)2022年九年級數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列語句中正確的是()A.長度相等的兩條弧是等弧B.平分弦的直徑垂直于弦C.相等的圓心角所對的弧相等D.經(jīng)過圓心的每一條直線都是圓的對稱軸2.由于受豬瘟的影響,今年9月份豬肉的價格兩次大幅上漲,瘦肉價格由原來每千克元,連續(xù)兩次上漲后,售價上升到每千克元,則下列方程中正確的是()A. B.C. D.3.如圖,已知,直線與直線相交于點,下列結(jié)論錯誤的是()A. B.C. D.4.如圖,滑雪場有一坡角α為20°的滑雪道,滑雪道AC的長為200米,則滑雪道的坡頂?shù)狡碌状怪备叨華B的長為()A.200tan20°米 B.米 C.200sin20°米 D.200cos20°米5.解方程,選擇最適當(dāng)?shù)姆椒ㄊ牵ǎ〢.直接開平方法 B.配方法 C.公式法 D.因式分解法6.某地質(zhì)學(xué)家預(yù)測:在未來的20年內(nèi),F(xiàn)市發(fā)生地震的概率是.以下敘述正確的是()A.從現(xiàn)在起經(jīng)過13至14年F市將會發(fā)生一次地震B(yǎng).可以確定F市在未來20年內(nèi)將會發(fā)生一次地震C.未來20年內(nèi),F(xiàn)市發(fā)生地震的可能性比沒有發(fā)生地震的可能性大D.我們不能判斷未來會發(fā)生什么事,因此沒有人可以確定何時會有地震發(fā)生7.若點與點關(guān)于原點成中心對稱,則的值是()A.1 B.3 C.5 D.78.如圖,已知OB為⊙O的半徑,且OB=10cm,弦CD⊥OB于M,若OM:MB=4:1,則CD長為()A.3cm B.6cm C.12cm D.24cm9.如果,那么的值等于()A. B. C. D.10.如圖,△ABC的頂點在網(wǎng)格的格點上,則tanA的值為()A. B. C. D.二、填空題(每小題3分,共24分)11.大自然是美的設(shè)計師,即使是一片小小的樹葉,也蘊含著“黃金分割”,如圖,P為AB的黃金分割點(AP>PB),如果AB的長度為10cm,那么AP的長度為_____cm.12.計算:=_________.13.如圖,點把弧分成三等分,是⊙的切線,過點分別作半徑的垂線段,已知,,則圖中陰影部分的面積是________.14.繞著A點旋轉(zhuǎn)后得到,若,,則旋轉(zhuǎn)角等于_____.15.如圖,四邊形是的內(nèi)接四邊形,且,點在的延長線上,若,則的半徑_________________.16.已知是一元二次方程的一個根,則的值是______.17.一個不透明的袋中裝有若干個紅球,為了估計袋中紅球的個數(shù),小文在袋中放入3個白球(每個球除顏色外其余都與紅球相同).搖勻后每次隨機從袋中摸出一個球,記下顏色后放回袋中,通過大量重復(fù)摸球試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.7左右,則袋中紅球約有_____個.18.如圖,四邊形ABCD、AEFG都是正方形,且∠BAE=45°,連接BE并延長交DG于點H,若AB=4,AE=,則線段BH的長是_____.三、解答題(共66分)19.(10分)某校在宣傳“民族團結(jié)”活動中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學(xué)生從中選擇并且只能選擇一種最喜歡的,學(xué)校就宣傳形式對學(xué)生進行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖:請結(jié)合圖中所給信息,解答下列問題(1)本次調(diào)查的學(xué)生共有人;(2)補全條形統(tǒng)計圖;(3)七年級一班在最喜歡“器樂”的學(xué)生中,有甲、乙、丙、丁四位同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)從這四位同學(xué)中隨機選出兩名同學(xué)參加學(xué)校的器樂隊,請用列表或畫樹狀圖法求被選取的兩人恰好是甲和乙的概率.20.(6分)如圖,已知拋物線的圖象經(jīng)過點、和原點,為直線上方拋物線上的一個動點.

(1)求直線及拋物線的解析式;(2)過點作軸的垂線,垂足為,并與直線交于點,當(dāng)為等腰三角形時,求的坐標(biāo);(3)設(shè)關(guān)于對稱軸的點為,拋物線的頂點為,探索是否存在一點,使得的面積為,如果存在,求出的坐標(biāo);如果不存在,請說明理由.21.(6分)如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D.過點D作EF⊥AC,垂足為E,且交AB的延長線于點F.(1)求證:EF是⊙O的切線;(2)已知AB=4,AE=1.求BF的長.22.(8分)如圖,中,頂點的坐標(biāo)是,軸,交軸于點,頂點的縱坐標(biāo)是,的面積是.反比例函數(shù)的圖象經(jīng)過點和,求反比例函數(shù)的表達式.23.(8分)快樂的寒假臨近啦!小明和小麗計劃在寒假期間去鎮(zhèn)江旅游.他們選取金山(記為)、焦山(記為)、北固山(記為)這三個景點為游玩目標(biāo).如果他們各自在三個景點中任選一個作為游玩的第一站(每個景點被選為第一站的可能性相同),請用“畫樹狀圖”或“列表”的方法求他倆都選擇金山為第一站的概率.24.(8分)如圖,在平面直角坐標(biāo)系中,拋物線(a≠0)與y軸交與點C(0,3),與x軸交于A、B兩點,點B坐標(biāo)為(4,0),拋物線的對稱軸方程為x=1.(1)求拋物線的解析式;(2)點M從A點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點N從B點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達終點時,另一個點也停止運動,設(shè)△MBN的面積為S,點M運動時間為t,試求S與t的函數(shù)關(guān)系,并求S的最大值;(3)在點M運動過程中,是否存在某一時刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請說明理由.25.(10分)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△ABO的邊AB垂直與x軸,垂足為點B,反比例函數(shù)(x>0)的圖象經(jīng)過AO的中點C,且與AB相交于點D,OB=4,AD=1.(1)求反比例函數(shù)的解析式;(2)求cos∠OAB的值;(1)求經(jīng)過C、D兩點的一次函數(shù)解析式.26.(10分)如圖,在平面直角坐標(biāo)系中,已知三個頂點的坐標(biāo)分別是,,.(1)請畫出關(guān)于軸對稱的;(2)以點為位似中心,相似比為1:2,在軸右側(cè),畫出放大后的;

參考答案一、選擇題(每小題3分,共30分)1、D【解析】分析:根據(jù)垂徑定理及逆定理以及圓的性質(zhì)來進行判定分析即可得出答案.詳解:A、在同圓或等圓中,長度相等的兩條弧是等?。籅、平分弦(不是直徑)的直徑垂直于弦;C、在同圓或等圓中,相等的圓心角所對的弧相等;D、經(jīng)過圓心的每一條直線都是圓的對稱軸;故選D.點睛:本題主要考查的是圓的一些基本性質(zhì),屬于基礎(chǔ)題型.理解圓的性質(zhì)是解決這個問題的關(guān)鍵.2、A【分析】增長率問題,一般用增長后的量=增長前的量×(1+增長率),先表示出第一次提價后商品的售價,再根據(jù)題意表示第二次提價后的售價,然后根據(jù)已知條件得到關(guān)于a%的方程.【詳解】解:當(dāng)豬肉第一次提價時,其售價為;當(dāng)豬肉第二次提價后,其售價為故選:.【點睛】本題考查了求平均變化率的方法.若設(shè)變化前的量為a,變化后的量為b,平均變化率為x,則經(jīng)過兩次變化后的數(shù)量關(guān)系為a(1±x)2=b.3、B【分析】根據(jù)平行線分線段成比例的性質(zhì)逐一分析即可得出結(jié)果.【詳解】解:A、由AB∥CD∥EF,則,所以A選項的結(jié)論正確;B、由AB∥CD,則,所以B選項的結(jié)論錯誤;C、由CD∥EF,則,所以C選項的結(jié)論正確;D、由AB∥EF,則,所以D選項的結(jié)論正確.故選:B.【點睛】本題考查了平行線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例.平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例.4、C【解析】解:∵sin∠C=,∴AB=AC?sin∠C=200sin20°.故選C.5、D【解析】根據(jù)方程含有公因式,即可判定最適當(dāng)?shù)姆椒ㄊ且蚴椒纸夥?【詳解】由已知,得方程含有公因式,∴最適當(dāng)?shù)姆椒ㄊ且蚴椒纸夥ü蔬x:D.【點睛】此題主要考查一元二次方程解法的選擇,熟練掌握,即可解題.6、C【分析】根據(jù)概率的意義,可知發(fā)生地震的概率是,說明發(fā)生地震的可能性大于不發(fā)生地震的可能性,從而可以解答本題.【詳解】∵某地質(zhì)學(xué)家預(yù)測:在未來的20年內(nèi),F(xiàn)市發(fā)生地震的概率是,∴未來20年內(nèi),F(xiàn)市發(fā)生地震的可能性比沒有發(fā)生地震的可能性大,故選C.【點睛】本題主要考查概率的意義,發(fā)生地震的概率是,說明發(fā)生地震的可能性大于不發(fā)生地政的可能性,這是解答本題的關(guān)鍵.7、C【分析】根據(jù)關(guān)于原點對稱的點的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù),可得答案.【詳解】解:∵點與點關(guān)于原點對稱,∴,,解得:,,則故選C.【點睛】本題考查了關(guān)于原點對稱的點的坐標(biāo),關(guān)于原點對稱的點的橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù).8、C【分析】根據(jù)OB=10cm,OM:MB=4:1,可求得OM的長,再根據(jù)垂徑定理和勾股定理可計算出答案.【詳解】∵弦CD⊥OB于M,∴CM=DM=CD,∵OM:MB=4:1,∴OM=OB=8cm,∴CM=(cm),∴CD=2CM=12cm,故選:C.【點睛】本題考查了垂徑定理和勾股定理,垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條?。?、D【分析】依據(jù),即可得到a=b,進而得出的值.【詳解】∵,∴3a﹣3b=5b,∴3a=8b,即a=b,∴==.故選D.【點睛】本題考查了比例的性質(zhì),解決問題的關(guān)鍵是運用內(nèi)項之積等于外項之積.10、A【分析】根據(jù)勾股定理,可得BD、AD的長,根據(jù)正切為對邊比鄰邊,可得答案.【詳解】解:如圖作CD⊥AB于D,CD=,AD=2,tanA=,故選A.【點睛】本題考查銳角三角函數(shù)的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.二、填空題(每小題3分,共24分)11、5-5【分析】利用黃金分割的定義計算出AP即可.【詳解】解:∵P為AB的黃金分割點(AP>PB),∴AP=AB=×10=5﹣5(cm),故答案為5﹣5【點睛】本題考查黃金分割:把線段AB分成兩條線段AC和BC(AC>BC),且使AC是AB和BC的比例中項(即AB:AC=AC:BC),叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點.12、7【分析】本題先化簡絕對值、算術(shù)平方根以及零次冪,最后再進行加減運算即可.【詳解】解:=6-3+1+3=7【點睛】此題主要考查了實數(shù)的混合運算,熟練掌握運算法則是解答此題的關(guān)鍵.13、【分析】根據(jù)題意可以求出各個扇形圓心角的度數(shù),然后利用扇形面積和三角形的面積公式即可求出陰影部分的面積.【詳解】解:∵是⊙的切線,,∴,∵點把弧分成三等分,,,,.故答案為:.【點睛】本題主要考查扇形的面積公式和等腰直角三角形的性質(zhì),掌握扇形的面積公式是解題的關(guān)鍵.14、50°或210°【分析】首先根據(jù)題意作圖,然后由∠BAC′=130°,∠BAC=80°,即可求得答案.【詳解】解:∵∠BAC′=130°,∠BAC=80°,

∴如圖1,∠CAC′=∠BAC′-∠BAC=50°,

如圖2,∠CAC′=∠BAC′+∠BAC=210°.

∴旋轉(zhuǎn)角等于50°或210°.

故答案為:50°或210°.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì).注意掌握數(shù)形結(jié)合思想與分類討論思想的應(yīng)用.15、【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì),證得是等邊三角形,再利用三角函數(shù)即可求得答案.【詳解】如圖,連接BD,過點O作OF⊥BD于F,∵四邊形是的內(nèi)接四邊形,且AB=AD=8,∠DCE=60,∴∠DCE=∠A=60,∠BOD=2∠A=120,∴是等邊三角形,AB=AD=BD=8,∵OB=OD,OF⊥BD,∴∠BOF=BF=,∴.故答案為:.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),等邊三角形的判定和性質(zhì),三角形函數(shù)的應(yīng)用等知識,運用“圓內(nèi)接四邊形的任意一個外角等于它的內(nèi)對角”證得∠A=60是解題的關(guān)鍵.16、0【分析】將代入方程中,可求出m的兩個解,然后根據(jù)一元二次方程的定義即可判斷m可取的值.【詳解】解:將代入一元二次方程中,得解得:∵是一元二次方程∴解得故m=0故答案為:0.【點睛】此題考查的是一元二次方程的定義和解,掌握一元二次方程的二次項系數(shù)不為0和解的定義是解決此題的關(guān)鍵.17、1【分析】根據(jù)口袋中有3個白球,利用小球在總數(shù)中所占比例得出與實驗比例應(yīng)該相等求出即可.【詳解】解:∵通過大量重復(fù)摸球試驗后發(fā)現(xiàn),摸到紅球的頻率是0.1,口袋中有3個白球,∵假設(shè)有x個紅球,∴,解得:x=1,經(jīng)檢驗x=1是方程的根,∴口袋中有紅球約有1個.故答案為:1.【點睛】此題主要考查了用樣本估計總體,根據(jù)已知得出小球在總數(shù)中所占比例得出與實驗比例應(yīng)該相等是解決問題的關(guān)鍵.18、【分析】連結(jié)GE交AD于點N,連結(jié)DE,由于∠BAE=45°,AF與EG互相垂直平分,且AF在AD上,由可得到AN=GN=1,所以DN=4﹣1=3,然后根據(jù)勾股定理可計算出,則,解著利用計算出HE,所以BH=BE+HE.【詳解】解:連結(jié)GE交AD于點N,連結(jié)DE,如圖,∵∠BAE=45°,∴AF與EG互相垂直平分,且AF在AD上,∵,∴AN=GN=1,∴DN=4﹣1=3,在Rt△DNG中,;由題意可得:△ABE相當(dāng)于逆時針旋轉(zhuǎn)90°得到△AGD,∴,∵,∴,∴.故答案是:.【點睛】本題考查了正方形的性質(zhì),解題的關(guān)鍵是會運用勾股定理和等腰直角三角形的性質(zhì)進行幾何計算.三、解答題(共66分)19、(1)100;(2)見解析;(3)【分析】(1)根據(jù)A項目的人數(shù)和所占的百分比求出總?cè)藬?shù)即可;(2)用總?cè)藬?shù)減去A、C、D項目的人數(shù),求出B項目的人數(shù),從而補全統(tǒng)計圖;(3)根據(jù)題意先畫出樹狀圖,得出所有等情況數(shù)和選取的兩人恰好是甲和乙的情況數(shù),然后根據(jù)概率公式即可得出答案.【詳解】解:(1)本次調(diào)查的學(xué)生共有:30÷30%=100(人);故答案為100;(2)喜歡B類項目的人數(shù)有:100﹣30﹣10﹣40=20(人),補全條形統(tǒng)計圖如圖1所示:(3)畫樹狀圖如圖2所示:共有12種情況,被選取的兩人恰好是甲和乙有2種情況,則被選取的兩人恰好是甲和乙的概率是=.故答案為(1)100;(2)見解析;(3).【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.也考查了統(tǒng)計圖.20、(1)直線的解析式為,二次函數(shù)的解析式是;(2);(3)存在,或【分析】(1)先將點A代入求出OA表達式,再設(shè)出二次函數(shù)的交點式,將點A代入,求出二次函數(shù)表達式;(2)根據(jù)題意得出當(dāng)為等腰三角形時,只有OC=PC,設(shè)點D的橫坐標(biāo)為x,表示出點P坐標(biāo),從而得出PC的長,再根據(jù)OC和OD的關(guān)系,列出方程解得;(3)設(shè)點P的坐標(biāo)為,根據(jù)條件的觸點Q坐標(biāo)為,再表示出的高,從而表示出的面積,令其等于,解得即可求出點P坐標(biāo).【詳解】解:(1)設(shè)直線的解析式為,把點坐標(biāo)代入得:,直線的解析式為;再設(shè),把點坐標(biāo)代入得:,函數(shù)的解析式為,∴直線的解析式為,二次函數(shù)的解析式是.(2)設(shè)的橫坐標(biāo)為,則的坐標(biāo)為,∵為直線上方拋物線上的一個動點,∴.此時僅有,,∴,解得,∴;(3)函數(shù)的解析式為,∴對稱軸為,頂點,設(shè),則,到直線的距離為,要使的面積為,則,即,解得:或,∴或.【點睛】本題考查了待定系數(shù)法求解析式,二次函數(shù)圖象及性質(zhì)的運用,點坐標(biāo)的關(guān)系,綜合性較強,解題的關(guān)鍵是利用條件表示出點坐標(biāo),得出方程解之.21、(1)證明見解析;(2)2.【解析】(1)作輔助線,根據(jù)等腰三角形三線合一得BD=CD,根據(jù)三角形的中位線可得OD∥AC,所以得OD⊥EF,從而得結(jié)論;(2)證明△ODF∽△AEF,列比例式可得結(jié)論.【詳解】(1)證明:連接OD,AD,∵AB是⊙O的直徑,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切線;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴ODAE∵AB=4,AE=1,∴23∴BF=2.【點睛】本題主要考查的是圓的綜合應(yīng)用,解答本題主要應(yīng)用了圓周角定理、相似三角形的性質(zhì)和判定,圓的切線的判定,掌握本題的輔助線的作法是解題的關(guān)鍵.22、.【解析】根據(jù)題意得出AE=6,結(jié)合平行四邊形的面積得出AD=BC=4,繼而知點D坐標(biāo),從而得出反比例函數(shù)解析式;【詳解】解:頂點的坐標(biāo)是,頂點的縱坐標(biāo)是,,又的面積是,,則,反比例函數(shù)解析式為.【點睛】本題主要考查待定系數(shù)法求反比例函數(shù)解析式,解題的關(guān)鍵是掌握平行四邊形的面積公式及待定系數(shù)法求反比例函數(shù)的能力.23、“畫樹狀圖”或“列表”見解析;(都選金山為第一站).【分析】畫樹形圖得出所有等可能的情況數(shù),找出小明和小麗都選金山為第一站的情況數(shù),即可求出所求的概率.【詳解】畫樹狀圖得:

∵共有9種等可能的結(jié)果,小明和小麗都選金山為第一站的只有1種情況,

∴(都選金山為第一站).【點睛】本題考查的是用列表法或樹狀圖法求概率.樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.24、(1);(2)S=,運動1秒使△PBQ的面積最大,最大面積是;(3)t=或t=.【分析】(1)把點A、B、C的坐標(biāo)分別代入拋物線解析式,列出關(guān)于系數(shù)a、b、c的解析式,通過解方程組求得它們的值;(2)設(shè)運動時間為t秒.利用三角形的面積公式列出S△MBN與t的函數(shù)關(guān)系式.利用二次函數(shù)的圖象性質(zhì)進行解答;(3)根據(jù)余弦函數(shù),可得關(guān)于t的方程,解方程,可得答案.【詳解】(1)∵點B坐標(biāo)為(4,0),拋物線的對稱軸方程為x=1,∴A(﹣2,0),把點A(﹣2,0)、B(4,0)、點C(0,3),分別代入(a≠0),得:,解得:,所以該拋物線的解析式為:;(2)設(shè)運動時間為t秒,則AM=3t,BN=t,∴MB=6﹣3t.由題意得,點C的坐標(biāo)為(0,3).在Rt△BOC中,BC==2.如圖1,過點N作NH⊥AB于點H,∴NH∥CO,∴△BHN∽△BOC,∴,即,∴HN=t,∴S△MBN=MB?HN=(6﹣3t)?t,即S=,當(dāng)△PBQ存在時,0<t<2,∴當(dāng)t=1時,S△PBQ最大=.答:運動1秒使△PBQ的面積最大,最大面積是;(3)如圖2,在Rt△OBC中,cos

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論