版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲乙兩人有三個不同的學(xué)習(xí)小組,,可以參加,若每人必須參加并且僅能參加一個學(xué)習(xí)小組,則兩人參加同一個小組的概率為()A.B.C.D.2.若的展開式中二項式系數(shù)和為256,則二項式展開式中有理項系數(shù)之和為()A.85 B.84 C.57 D.563.網(wǎng)絡(luò)是一種先進的高頻傳輸技術(shù),我國的技術(shù)發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機,現(xiàn)調(diào)查得到該款手機上市時間和市場占有率(單位:%)的幾組相關(guān)對應(yīng)數(shù)據(jù).如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據(jù)數(shù)據(jù)得出關(guān)于的線性回歸方程為.若用此方程分析并預(yù)測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月4.已知點是拋物線的對稱軸與準線的交點,點為拋物線的焦點,點在拋物線上且滿足,若取得最大值時,點恰好在以為焦點的橢圓上,則橢圓的離心率為()A. B. C. D.5.一艘海輪從A處出發(fā),以每小時24海里的速度沿南偏東40°的方向直線航行,30分鐘后到達B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點間的距離是()A.6海里 B.6海里 C.8海里 D.8海里6.若實數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.7.第24屆冬奧會將于2023年2月4日至2月20日在北京市和張家口市舉行,為了解奧運會會旗中五環(huán)所占面積與單獨五個環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實驗:通過計算機模擬在長為10,寬為6的長方形奧運會旗內(nèi)隨機取N個點,經(jīng)統(tǒng)計落入五環(huán)內(nèi)部及其邊界上的點數(shù)為n個,已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.8.已知函數(shù)則函數(shù)的圖象的對稱軸方程為()A. B.C. D.9.某校在高一年級進行了數(shù)學(xué)競賽(總分100分),下表為高一·一班40名同學(xué)的數(shù)學(xué)競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學(xué)生的數(shù)學(xué)競賽成績,運行相應(yīng)的程序,輸出,的值,則()A.6 B.8 C.10 D.1210.已知函數(shù),,的零點分別為,,,則()A. B.C. D.11.復(fù)數(shù)(i為虛數(shù)單位)的共軛復(fù)數(shù)是A.1+i B.1?i C.?1+i D.?1?i12.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)為奇函數(shù),則_______.14.設(shè)P為有公共焦點的橢圓與雙曲線的一個交點,且,橢圓的離心率為,雙曲線的離心率為,若,則______________.15.已知函數(shù)的部分圖象如圖所示,則的值為____________.16.已知,若,則a的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是直角梯形,,,,是正三角形,,是的中點.(1)證明:;(2)求直線與平面所成角的正弦值.18.(12分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)函數(shù),若對于,使得成立,求的取值范圍.20.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線的左焦點在直線上.(Ⅰ)求的極坐標方程和曲線的參數(shù)方程;(Ⅱ)求曲線的內(nèi)接矩形的周長的最大值.21.(12分)已知函數(shù).(1)若恒成立,求的取值范圍;(2)設(shè)函數(shù)的極值點為,當變化時,點構(gòu)成曲線,證明:過原點的任意直線與曲線有且僅有一個公共點.22.(10分)已知的三個內(nèi)角所對的邊分別為,向量,,且.(1)求角的大??;(2)若,求的值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】依題意,基本事件的總數(shù)有種,兩個人參加同一個小組,方法數(shù)有種,故概率為.2.A【解析】
先求,再確定展開式中的有理項,最后求系數(shù)之和.【詳解】解:的展開式中二項式系數(shù)和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數(shù)之和為:故選:A【點睛】考查二項式的二項式系數(shù)及展開式中有理項系數(shù)的確定,基礎(chǔ)題.3.C【解析】
根據(jù)圖形,計算出,然后解不等式即可.【詳解】解:,點在直線上,令因為橫軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C【點睛】考查如何確定線性回歸直線中的系數(shù)以及線性回歸方程的實際應(yīng)用,基礎(chǔ)題.4.B【解析】
設(shè),利用兩點間的距離公式求出的表達式,結(jié)合基本不等式的性質(zhì)求出的最大值時的點坐標,結(jié)合橢圓的定義以及橢圓的離心率公式求解即可.【詳解】設(shè),因為是拋物線的對稱軸與準線的交點,點為拋物線的焦點,所以,則,當時,,當時,,當且僅當時取等號,此時,,點在以為焦點的橢圓上,,由橢圓的定義得,所以橢圓的離心率,故選B.【點睛】本題主要考查橢圓的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個重點也是難點,一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來求解.5.A【解析】
先根據(jù)給的條件求出三角形ABC的三個內(nèi)角,再結(jié)合AB可求,應(yīng)用正弦定理即可求解.【詳解】由題意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故選:A.【點睛】本題考查正弦定理的實際應(yīng)用,關(guān)鍵是將給的角度、線段長度轉(zhuǎn)化為三角形的邊角關(guān)系,利用正余弦定理求解.屬于中檔題.6.B【解析】
根據(jù)所給不等式組,畫出不等式表示的可行域,將目標函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當經(jīng)過原點時截距最小,;當經(jīng)過時,截距最大值,,所以線性目標函數(shù)的取值范圍為,故選:B.【點睛】本題考查了線性規(guī)劃的簡單應(yīng)用,線性目標函數(shù)取值范圍的求法,屬于基礎(chǔ)題.7.B【解析】
根據(jù)比例關(guān)系求得會旗中五環(huán)所占面積,再計算比值.【詳解】設(shè)會旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.【點睛】本題考查面積型幾何概型的問題求解,屬基礎(chǔ)題.8.C【解析】
,將看成一個整體,結(jié)合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點睛】本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質(zhì)時,一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.9.D【解析】
根據(jù)程序框圖判斷出的意義,由此求得的值,進而求得的值.【詳解】由題意可得的取值為成績大于等于90的人數(shù),的取值為成績大于等于60且小于90的人數(shù),故,,所以.故選:D【點睛】本小題考查利用程序框圖計算統(tǒng)計量等基礎(chǔ)知識;考查運算求解能力,邏輯推理能力和數(shù)學(xué)應(yīng)用意識.10.C【解析】
轉(zhuǎn)化函數(shù),,的零點為與,,的交點,數(shù)形結(jié)合,即得解.【詳解】函數(shù),,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【點睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.11.B【解析】分析:化簡已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得.詳解:化簡可得z=∴z的共軛復(fù)數(shù)為1﹣i.故選B.點睛:本題考查復(fù)數(shù)的代數(shù)形式的運算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題.12.B【解析】
計算求半徑為,再計算球體積和圓錐體積,計算得到答案.【詳解】如圖所示:設(shè)球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學(xué)生的計算能力和空間想象能力.二、填空題:本題共4小題,每小題5分,共20分。13.-2【解析】
由是定義在上的奇函數(shù),可知對任意的,都成立,代入函數(shù)式可求得的值.【詳解】由題意,的定義域為,,是奇函數(shù),則,即對任意的,都成立,故,整理得,解得.故答案為:.【點睛】本題考查奇函數(shù)性質(zhì)的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.14.【解析】設(shè)根據(jù)橢圓的幾何性質(zhì)可得,根據(jù)雙曲線的幾何性質(zhì)可得,,即故答案為15.【解析】
由圖可得的周期、振幅,即可得,再將代入可解得,進一步求得解析式及.【詳解】由圖可得,,所以,即,又,即,,又,故,所以,.故答案為:【點睛】本題考查由圖象求解析式及函數(shù)值,考查學(xué)生識圖、計算等能力,是一道中檔題.16.【解析】
函數(shù)等價為,由二次函數(shù)的單調(diào)性可得在R上遞增,即為,可得a的不等式,解不等式即可得到所求范圍.【詳解】,等價為,且時,遞增,時,遞增,且,在處函數(shù)連續(xù),可得在R上遞增,即為,可得,解得,即a的取值范圍是.故答案為:.【點睛】本題考查分段函數(shù)的單調(diào)性的判斷和運用:解不等式,考查轉(zhuǎn)化思想和運算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見證明;(2)【解析】
(1)設(shè)是的中點,連接、,先證明是平行四邊形,再證明平面,即(2)以為坐標原點,的方向為軸的正方向,建空間直角坐標系,分別計算各個點坐標,計算平面法向量,利用向量的夾角公式得到直線與平面所成角的正弦值.【詳解】(1)證明:設(shè)是的中點,連接、,是的中點,,,,,,,是平行四邊形,,,,,,,,由余弦定理得,,,,平面,,;(2)由(1)得平面,,平面平面,過點作,垂足為,平面,以為坐標原點,的方向為軸的正方向,建立如圖的空間直角坐標系,則,,,,設(shè)是平面的一個法向量,則,,令,則,,,直線與平面所成角的正弦值為.【點睛】本題考查了線面垂直,線線垂直,利用空間直角坐標系解決線面夾角問題,意在考查學(xué)生的空間想象能力和計算能力.18.(1)(2)特征值為或.【解析】
(1)先設(shè)矩陣,根據(jù),按照運算規(guī)律,即可求出矩陣.(2)令矩陣的特征多項式等于,即可求出矩陣的特征值.【詳解】解:(1)設(shè)矩陣由題意,因為,所以,即所以,(2)矩陣的特征多項式,令,解得或,所以矩陣的特征值為1或.【點睛】本題主要考查矩陣的乘法和矩陣的特征值,考查學(xué)生的劃歸與轉(zhuǎn)化能力和運算求解能力.19.(1)當時,在上增;當時,在上減,在上增(2)【解析】
(1)求出導(dǎo)函數(shù),分類討論確定的正負,確定單調(diào)區(qū)間;(2)題意說明,利用導(dǎo)數(shù)求出的最小值,由(1)可得的最小值,從而得出結(jié)論.【詳解】解:(1)定義域為當時,即在上增;當時,即得得綜上所述,當時,在上增;當時,在上減,在上增(2)由題在上增由(1)當時,在上增,所以此時無最小值;當時,在上減,在上增,即,解得綜上【點睛】本題考查用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查不等式恒成立問題,解題關(guān)鍵是掌握轉(zhuǎn)化與化歸思想,本題恒成立問題轉(zhuǎn)化為,求出兩函數(shù)的最小值后可得結(jié)論.20.(Ⅰ)曲線的參數(shù)方程為:(為參數(shù));的極坐標方程為;(Ⅱ)16.【解析】
(
I
)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程、極坐標方程和直角坐標方程之間進行轉(zhuǎn)換;(
II
)利用三角函數(shù)關(guān)系式的恒等變換和正弦型函數(shù)的性質(zhì)的應(yīng)用,即可求出結(jié)果.【詳解】(Ⅰ)由題意:曲線的直角坐標方程為:,所以曲線的參數(shù)方程為(為參數(shù)),因為直線的直角坐標方程為:,又因曲線的左焦點為,將其代入中,得到,所以的極坐標方程為.(Ⅱ)設(shè)橢圓的內(nèi)接矩形的頂點為,,,,所以橢圓的內(nèi)接矩形的周長為:,所以當時,即時,橢圓的內(nèi)接矩形的周長取得最大值16.【點睛】本題考查了曲線的參數(shù)方程,極坐標方程與普通方程間的互化,三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,極徑的應(yīng)用,考查學(xué)生的求解運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.21.(1);(2)證明見解析【解析】
(1)由恒成立,可得恒成立,進而構(gòu)造函數(shù),求導(dǎo)可判斷出的單調(diào)性,進而可求出的最小值,令即可;(2)由,可知存在唯一的,使得,則,,進而可得,即曲線的方程為,進而只需證明對任意,方程有唯一解,然后構(gòu)造函數(shù),分、和三種情況,分別證明函數(shù)在上有唯一的零點,即可證明結(jié)論成立.【詳解】(1)由題意,可知,由恒成立,可得恒成立.令,則.令,則,,,在上單調(diào)遞增,又,時,;時,,即時,;時,,時,單調(diào)遞減;時,單調(diào)遞增,時,取最小值,.(2)證明:由,令,由,結(jié)合二次函數(shù)性質(zhì)可知,存在唯一的,使得,故存在唯一的極值點,則,,,曲線的方程為.故只需證明對任意,方程有唯一解.令,則,①當時,恒成立,在上單調(diào)遞增.,,,存在滿足
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 弘則研究:生成式A1驅(qū)動向量數(shù)據(jù)庫加速發(fā)展
- 2024年小學(xué)班主任管理制度例文(三篇)
- 2024年小學(xué)學(xué)校教學(xué)工作計劃樣本(七篇)
- 2024年地測工作規(guī)章制度范例(四篇)
- 2024年商標轉(zhuǎn)讓協(xié)議合同經(jīng)典版(二篇)
- 2024年大學(xué)班級工作總結(jié)常用版(八篇)
- 2024年學(xué)校圖書館管理制度模版(三篇)
- 2024年實習(xí)生勞動合同格式版(二篇)
- 2024年天貓運營經(jīng)理的工作職責(zé)(二篇)
- 2024年工程材料合同格式范本(二篇)
- 2024年中國教育部留學(xué)服務(wù)中心招聘筆試沖刺題含答案解析
- 2023年藥店店員專業(yè)基礎(chǔ)知識測試題及答案(一)
- 人工智能概論-人工智能概述
- 2024年道路交通安全知識答題(試題及答案)
- 小學(xué)教學(xué)教學(xué)大綱
- 運輸公司安全生產(chǎn)方針和目范本
- 私有云平臺搭建從入門到通
- 盤扣式落地外腳手架施工方案
- 內(nèi)科學(xué)考點速記
- 兒童簡歷模板
- 旅行社營銷中的危機公關(guān)管理
評論
0/150
提交評論