2023屆山東省威海市名校九年級數學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
2023屆山東省威海市名校九年級數學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
2023屆山東省威海市名校九年級數學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
2023屆山東省威海市名校九年級數學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
2023屆山東省威海市名校九年級數學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,已知△AOB與△A1OB1是以點O為位似中心的位似圖形,且相似比為1:2,點B的坐標為(-1,2),則點B1的坐標為()A.(2,-4) B.(1,-4) C.(-1,4) D.(-4,2)2.一次函數y=bx+a與二次函數y=ax2+bx+c(a0)在同一坐標系中的圖象大致是()A. B. C. D.3.某藥品原價每盒28元,為響應國家解決老百姓看病貴的號召,經過連續(xù)兩次降價,現在售價每盒16元,設該藥品平均每次降價的百分率是x,由題意,所列方程正確的是()A.28(1-2x)=16 B.16(1+2x)=28 C.28(1-x)2=16 D.16(1+x)2=284.如圖,矩形ABCD中,BC=4,CD=2,O為AD的中點,以AD為直徑的弧DE與BC相切于點E,連接BD,則陰影部分的面積為()A.π B. C.π+2 D.+45.下列成語描述的事件為隨機事件的是()A.水漲船高B.守株待兔C.水中撈月D.緣木求魚6.二次函數y=x2+4x+3,當0≤x≤時,y的最大值為()A.3 B.7 C. D.7.將點A(﹣3,4)繞原點順時針方向旋轉180°后得到點B,則點B的坐標為()A.(3,﹣4) B.(﹣4,3) C.(﹣4,﹣3) D.(﹣3,﹣4)8.如圖,△ABC的頂點均在⊙O上,若∠A=36°,則∠OBC的度數為()A.18° B.36° C.60° D.54°9.二次函數(b>0)與反比例函數在同一坐標系中的圖象可能是()A. B. C. D.10.如圖,AB是⊙O的直徑,∠AOC=130°,則∠D等于()A.25° B.35° C.50° D.65°二、填空題(每小題3分,共24分)11.若、是方程的兩個實數根,代數式的值是______.12.從數﹣2,﹣,0,4中任取一個數記為m,再從余下的三個數中,任取一個數記為n,若k=mn,則正比例函數y=kx的圖象經過第三、第一象限的概率是_____.13.已知一元二次方程x2-10x+21=0的兩個根恰好分別是等腰三角形ABC的底邊長和腰長,則△ABC的周長為_________.14.如圖,已知的半徑為2,內接于,,則__________.15.如圖,在△ABC中,∠BAC=33°,將△ABC繞點A按順時針方向旋轉50°,對應得到△AB′C′,則∠B′AC的度數為____.16.半徑為4的圓中,長為4的弦所對的圓周角的度數是_________.17.從地面垂直向上拋出一小球,小球的高度h(米)與小球運動時間t(秒)之間的函數關系式是h=12t﹣6t2,則小球運動到的最大高度為________米;18.若,則=___________.三、解答題(共66分)19.(10分)小紅想利用陽光下的影長測量學校旗桿AB的高度.如圖,他在某一時刻在地面上豎直立一個2米長的標桿CD,測得其影長DE=0.4米.(1)請在圖中畫出此時旗桿AB在陽光下的投影BF.(2)如果BF=1.6,求旗桿AB的高.20.(6分)解方程:(1)3x(x-2)=4(x-2);(2)2x2-4x+1=021.(6分)如圖,已知點在反比例函數的圖像上.(1)求a的值;(2)如果直線y=x+b也經過點A,且與x軸交于點C,連接AO,求的面積.22.(8分)如圖,雙曲線經過點P(2,1),且與直線y=kx﹣4(k<0)有兩個不同的交點.(1)求m的值.(2)求k的取值范圍.23.(8分)舉世矚目的港珠澳大橋已于2018年10月24日正式通車,這座大橋是世界上最長的跨海大橋,被英國《衛(wèi)報》譽為“新世界七大奇跡”,車輛經過這座大橋收費站時,從已開放的4個收費通道A、B、C、D中可隨機選擇其中一個通過.(1)一輛車經過收費站時,選擇A通道通過的概率是.(2)用樹狀圖或列表法求兩輛車經過此收費站時,選擇不同通道通過的概率.24.(8分)(1)如圖①,AB為⊙O的直徑,點P在⊙O上,過點P作PQ⊥AB,垂足為點Q.說明△APQ∽△ABP;(2)如圖②,⊙O的半徑為7,點P在⊙O上,點Q在⊙O內,且PQ=4,過點Q作PQ的垂線交⊙O于點A、B.設PA=x,PB=y(tǒng),求y與x的函數表達式.25.(10分)一個不透明袋子中有個紅球,個綠球和個白球,這些球除顏色外無其他差別,當時,從袋中隨機摸出個球,摸到紅球和摸到白球的可能性(填“相同”或“不相同”);從袋中隨機摸出一個球,記錄其顏色,然后放回,大量重復該實驗,發(fā)現摸到綠球的頻率穩(wěn)定于,則的值是;在的情況下,如果一次摸出兩個球,請用樹狀圖或列表法求摸出的兩個球顏色不同的概率.26.(10分)如圖,AB是的直徑,點C,D在上,且BD平分∠ABC.過點D作BC的垂線,與BC的延長線相交于點E,與BA的延長線相交于點F.(1)求證:EF與相切:(2)若AB=3,BD=,求CE的長.

參考答案一、選擇題(每小題3分,共30分)1、A【解析】過B作BC⊥y軸于C,過B1作B1D⊥y軸于D,依據△AOB和△A1OB1相似,且相似比為1:2,即可得到,再根據△BOC∽△B1OD,可得OD=2OC=4,B1D=2BC=2,進而得出點B1的坐標為(2,-4).【詳解】解:如圖,過B作BC⊥y軸于C,過B1作B1D⊥y軸于D,

∵點B的坐標為(-1,2),

∴BC=1,OC=2,

∵△AOB和△A1OB1相似,且相似比為1:2,∴,∵∠BCO=∠B1DO=90°,∠BOC=∠B1OD,

∴△BOC∽△B1OD,

∴OD=2OC=4,B1D=2BC=2,

∴點B1的坐標為(2,-4),

故選:A.【點睛】本題考查的是位似變換的性質,正確理解位似與相似的關系,記憶關于原點位似的兩個圖形對應點坐標之間的關系是解題的關鍵.2、C【解析】A.由拋物線可知,a>0,x=?<0,得b<0,由直線可知,a>0,b>0,故本選項錯誤;B.由拋物線可知,a>0,x=?>0,得b<0,由直線可知,a>0,b>0,故本選項錯誤;C.由拋物線可知,a<0,x=?<0,得b<0,由直線可知,a<0,b<0,故本選項正確;D.由拋物線可知,a<0,x=?<0,得b<0,由直線可知,a<0,b>0,故本選項錯誤.故選C.3、C【解析】可先表示出第一次降價后的價格,那么第一次降價后的價格×(1﹣降低的百分率)=1,把相應數值代入即可求解.【詳解】解:設該藥品平均每次降價的百分率是x,則第一次降價后的價格為28×(1﹣x)元,兩次連續(xù)降價后的售價是在第一次降價后的價格的基礎上降低x,為28×(1﹣x)×(﹣x)元,則列出的方程是28(1﹣x)2=1.故選:C.4、A【分析】連接OE交BD于F,如圖,利用切線的性質得到OE⊥BC,再證明四邊形ODCE和四邊形ABEO都是正方形得到BE=2,∠DOE=∠BEO=90°,易得△ODF≌△EBF,所以S△ODF=S△EBF,然后根據扇形的面積公式,利用陰影部分的面積=S扇形EOD計算即可.【詳解】連接OE交BD于F,如圖,∵以AD為直徑的半圓O與BC相切于點E,∴OE⊥BC.∵四邊形ABCD為矩形,OA=OD=2,而CD=2,∴四邊形ODCE和四邊形ABEO都是正方形,∴BE=2,∠DOE=∠BEO=90°.∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF=S△EBF,∴陰影部分的面積=S扇形EOD.故選:A.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.也考查了矩形的性質和扇形面積公式.5、B【解析】試題解析:水漲船高是必然事件,A不正確;守株待兔是隨機事件,B正確;水中撈月是不可能事件,C不正確緣木求魚是不可能事件,D不正確;故選B.考點:隨機事件.6、D【解析】利用配方法把二次函數解析式化為頂點式,根據二次函數的性質解答.【詳解】解:y=x2+4x+3=x2+4x+4﹣1=(x+2)2﹣1,則當x>﹣2時,y隨x的增大而增大,∴當x=時,y的最大值為()2+4×+3=,故選:D.【點睛】本題考查配方法把二次函數解析式化為頂點式根據二次函數性質解答的運用7、A【分析】根據點A(﹣3,4)繞坐標原點旋轉180°得到點B,即可得出答案.【詳解】解:根據點A(﹣3,4)繞坐標原點旋轉180°得到點B,可知A、B兩點關于原點對稱,∴點B坐標為(3,﹣4),故選:A.【點睛】本題考查坐標與圖形變換—旋轉,解題關鍵是熟練掌握旋轉的旋轉.8、D【解析】根據圓周角定理,由∠A=36°,可得∠O=2∠A=72°,然后根據OB=OC,求得∠OBC=12(180°-∠O)=1故選:D點睛:此題主要考查了圓周角定理,解題時,根據同弧所對的圓周角等于圓心角的一半,求出圓心角,再根據等腰三角形的性質和三角形的內角和定理求解即可,解題關鍵是發(fā)現同弧所對的圓心角和圓周角,明確關系進行計算.9、B【解析】試題分析:先根據各選項中反比例函數圖象的位置確定a的范圍,再根據a的范圍對拋物線的大致位置進行判斷,從而對各選項作出判斷:∵當反比例函數經過第二、四象限時,a<0,∴拋物線(b>0)中a<0,b>0,∴拋物線開口向下.所以A選項錯誤.∵當反比例函數經過第一、三象限時,a>0,∴拋物線(b>0)中a>0,b>0,∴拋物線開口向上,拋物線與y軸的交點在x軸上方.所以B選項正確,C,D選項錯誤.故選B.考點:1.二次函數和反比例函數的圖象與系數的關系;2.數形結合思想的應用.10、A【解析】試題分析:∵AB是⊙O的直徑,∴∠BOC=180°-∠AOC=180°-130°=50°,∴∠D=∠BOC=×50°=25°.故選A.考點:圓周角定理二、填空題(每小題3分,共24分)11、1【分析】先對所求代數式進行變形為,然后將代入方程中求出的值,根據根與系數的關系求出的值,最后代入即可求解.【詳解】∵是方程的根∴∴∵、是方程的兩個實數根∴原式=故答案為:1.【點睛】本題主要考查一元二次方程的根,根與系數的關系,掌握根與系數的關系,能夠對所求代數式進行適當變形是解題的關鍵.12、【解析】從數﹣2,﹣,1,4中任取1個數記為m,再從余下,3個數中,任取一個數記為n.根據題意畫圖如下:共有12種情況,由題意可知正比例函數y=kx的圖象經過第三、第一象限,即可得到k=mn>1.由樹狀圖可知符合mn>1的情況共有2種,因此正比例函數y=kx的圖象經過第三、第一象限的概率是.故答案為.13、1【分析】先求出方程的解,然后分兩種情況進行分析,結合構成三角形的條件,即可得到答案.【詳解】解:∵一元二次方程x2-10x+21=0有兩個根,∴,∴,∴或,當3為腰長時,3+3<7,不能構成三角形;當7為腰長時,則周長為:7+7+3=1;故答案為:1.【點睛】本題考查了解一元二次方程,等腰三角形的定義,構成三角形的條件,解題的關鍵是掌握所學的知識,注意運用分類討論的思想進行解題.14、【解析】分析:根據圓內接四邊形對邊互補和同弧所對的圓心角是圓周角的二倍,可以求得∠AOB的度數,然后根據勾股定理即可求得AB的長.詳解:連接AD、AE、OA、OB,∵⊙O的半徑為2,△ABC內接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案為:2.點睛:本題考查三角形的外接圓和外心,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.15、17°【詳解】解:∵∠BAC=33°,將△ABC繞點A按順時針方向旋轉50°,對應得到△AB′C′,∴∠B′AC′=33°,∠BAB′=50°,∴∠B′AC的度數=50°?33°=17°.故答案為17°.16、或【分析】首先根據題意畫出圖形,然后在優(yōu)弧上取點C,連接AC,BC,在劣弧上取點D,連接AD,BD,易得是等邊三角形,再利用圓周角定理,即可得出答案.【詳解】.如圖所示在優(yōu)弧上取點C,連接AC,BC,在劣弧上取點D,連接AD,BD,∵,∴∴是等邊三角形∴∴∴∴所對的圓周角的度數為或故答案為:或.【點睛】本題考查了圓周角的問題,掌握圓周角定理是解題的關鍵.17、6【分析】現將函數解析式配方得,即可得到答案.【詳解】,∴當t=1時,h有最大值6.故答案為:6.【點睛】此題考查最值問題,確定最值時需現將函數解析式配方為頂點式,再根據開口方向確定最值.18、【分析】根據題干信息,利用已知得出a=b,進而代入代數式求出答案即可.【詳解】解:∵,∴a=b,∴=.故答案為:.【點睛】本題主要考查比例的性質,正確得出a=b,并利用代入代數式求值是解題關鍵.三、解答題(共66分)19、(1)見解析(2)8m【詳解】試題分析:(1)利用太陽光線為平行光線作圖:連結CE,過A點作AF∥CE交BD于F,則BF為所求;(2)證明△ABF∽△CDE,然后利用相似比計算AB的長.試題解析:(1)連結CE,過A點作AF∥CE交BD于F,則BF為所求,如圖;(2)∵AF∥CE,∴∠AFB=∠CED,而∠ABF=∠CDE=90°,∴△ABF∽△CDE,∴,即,∴AB=8(m),答:旗桿AB的高為8m.20、(1)x1=2,x2=;(2),.【分析】(1)先移項,再分解因式,即可得出兩個一元一次方程,求出方程的解即可;

(2)先求出b2-4ac的值,再代入公式求出即可.【詳解】解:(1)3x(x-2)=4(x-2),

3x(x-2)-4(x-2)=0,

(x-2)(3x-4)=0,

x-2=0,3x-4=0,

x1=2,x2=;

(2)2x2-4x+1=0,

b2-4ac=42-4×2×1=8,,

,.【點睛】本題考查了解一元二次方程,能夠選擇適當的方法解一元二次方程是解此題的關鍵.21、(1)2;(2)1【分析】(1)將A坐標代入反比例函數解析式中,即可求出a的值;(2)由(1)求出的a值,確定出A坐標,代入直線解析式中求出b的值,令直線解析式中y=0求出x的值,確定出OC的長,△AOC以OC為底,A縱坐標為高,利用三角形面積公式求出即可.【詳解】(1)將A(1,a)代入反比例解析式得:;(2)由a=2,得到A(1,2),代入直線解析式得:1+b=2,解得:b=1,即直線解析式為y=x+1,令y=0,解得:x=-1,即C(-1,0),OC=1,則S△AOC=×1×2=1.【點睛】此題考查了反比例函數與一次函數的交點問題,涉及的知識有:坐標與圖形性質,待定系數法確定函數解析式,三角形的面積求法,熟練掌握待定系數法是解本題的關鍵.22、(1)m=2;(2)k的取值范圍是﹣2<k<0.【解析】(1)將點P坐標代入,利用待定系數法求解即可;(2)由題意可得關于x的一元二次方程,根據有兩個不同的交點,可得△=(﹣4)2﹣4k?(﹣2)>0,求解即可.【詳解】(1)∵雙曲線經過點P(2,1),∴m=2×1=2;(2)∵雙曲線與直線y=kx﹣4(k<0)有兩個不同的交點,∴,整理得:kx2﹣4x﹣2=0,∴△=(﹣4)2﹣4k?(﹣2)>0,∴k>﹣2,∴k的取值范圍是﹣2<k<0.【點睛】本題考查了反比例函數與一次函數綜合,涉及了待定系數法、一元二次方程根的判別式等,熟練掌握相關知識是解題的關鍵.23、(1);(2).【解析】(1)根據概率公式即可得到結論;(2)畫出樹狀圖即可得到結論.【詳解】解答:(1)一輛車經過收費站時,選擇A通道通過的概率是,故答案為.(2)列表如下:ABCDAAAABACADBBABBBCBDCCACBCCCDDDADBDCDD由表可知,共有16種等可能結果,其中選擇不同通道通過的有12種結果,所以選擇不同通道通過的概率為=.【點睛】本題考查了列表法與樹狀圖法,概率公式,正確的畫出樹狀圖是解題的關鍵.24、(1)見解析;(2)【分析】(1)根據圓周角定理可證∠APB=90°,再根據相似三角形的判定方法:兩角對應相等,兩個三角形相似即可求證結論;(2)連接PO,并延長PO交⊙O于點C,連接AC,根據圓周角定理可得∠PAC=90°,∠C=∠B,求得∠PAC=∠PQB,根據相似三角形的性質即可得到結論.【詳解】(1)如圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論