![2022-2023學(xué)年河南省信陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁](http://file4.renrendoc.com/view/0d1b6f04acbcdf9f4dd66653762df74b/0d1b6f04acbcdf9f4dd66653762df74b1.gif)
![2022-2023學(xué)年河南省信陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁](http://file4.renrendoc.com/view/0d1b6f04acbcdf9f4dd66653762df74b/0d1b6f04acbcdf9f4dd66653762df74b2.gif)
![2022-2023學(xué)年河南省信陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁](http://file4.renrendoc.com/view/0d1b6f04acbcdf9f4dd66653762df74b/0d1b6f04acbcdf9f4dd66653762df74b3.gif)
![2022-2023學(xué)年河南省信陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁](http://file4.renrendoc.com/view/0d1b6f04acbcdf9f4dd66653762df74b/0d1b6f04acbcdf9f4dd66653762df74b4.gif)
![2022-2023學(xué)年河南省信陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁](http://file4.renrendoc.com/view/0d1b6f04acbcdf9f4dd66653762df74b/0d1b6f04acbcdf9f4dd66653762df74b5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年河南省信陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.設(shè)y=2x3,則dy=().
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
3.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
4.級(jí)數(shù)(a為大于0的常數(shù))().A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)
5.
6.
7.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無關(guān)條件
8.下列關(guān)系式正確的是()A.A.
B.
C.
D.
9.
10.
11.
12.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C
13.
14.A.f(2x)
B.2f(x)
C.f(-2x)
D.-2f(x)
15.
16.
17.A.2B.1C.1/2D.-1
18.人們對(duì)某一目標(biāo)的重視程度與評(píng)價(jià)高低,即人們?cè)谥饔^上認(rèn)為這種報(bào)酬的價(jià)值大小叫做()
A.需要B.期望值C.動(dòng)機(jī)D.效價(jià)
19.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值
20.
21.
22.
A.2x2+x+C
B.x2+x+C
C.2x2+C
D.x2+C
23.
24.若xo為f(x)的極值點(diǎn),則()A.A.f(xo)必定存在,且f(xo)=0
B.f(xo)必定存在,但f(xo)不一定等于零
C.f(xo)可能不存在
D.f(xo)必定不存在
25.函數(shù)y=sinx在區(qū)間[0,n]上滿足羅爾定理的ξ=A.A.0B.π/4C.π/2D.π
26.下列級(jí)數(shù)中發(fā)散的是()
A.
B.
C.
D.
27.
28.設(shè)函數(shù)f(x)=則f(x)在x=0處()A.可導(dǎo)B.連續(xù)但不可導(dǎo)C.不連續(xù)D.無定義
29.
30.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
31.
32.A.(1/3)x3
B.x2
C.2xD.(1/2)x
33.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值
34.微分方程y''-2y'=x的特解應(yīng)設(shè)為
A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c
35.
36.設(shè)f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且f(0)=f(1),則在(0,1)內(nèi)曲線y=f(x)的所有切線中().A.A.至少有一條平行于x軸B.至少有一條平行于y軸C.沒有一條平行于x軸D.可能有一條平行于y軸
37.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時(shí),f(x)<0;當(dāng)x>-1時(shí),f(x)>0.則下列結(jié)論肯定正確的是().
A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)
38.
39.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2
40.
41.下列命題中正確的有().A.A.
B.
C.
D.
42.方程z=x2+y2表示的曲面是()
A.橢球面B.旋轉(zhuǎn)拋物面C.球面D.圓錐面43.
44.A.A.
B.B.
C.C.
D.D.
45.
46.()。A.充分必要條件B.充分非必要條件C.必要非充分條件D.既非充分也非必要條件47.微分方程y+y=0的通解為().A.A.
B.
C.
D.
48.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無關(guān)條件
49.
50.
二、填空題(20題)51.
52.
53.
54.已知當(dāng)x→0時(shí),-1與x2是等價(jià)無窮小,則a=________。55.冪級(jí)數(shù)的收斂區(qū)間為______.56.57.過點(diǎn)Mo(1,-1,0)且與平面x-y+3z=1平行的平面方程為_______.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.設(shè)區(qū)域D由y軸,y=x,y=1所圍成,則.
69.
70.設(shè)函數(shù)y=x3,則y'=________.
三、計(jì)算題(20題)71.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.72.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
73.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.74.75.求曲線在點(diǎn)(1,3)處的切線方程.
76.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
77.
78.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
79.
80.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.81.將f(x)=e-2X展開為x的冪級(jí)數(shù).82.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則83.84.
85.證明:
86.求微分方程y"-4y'+4y=e-2x的通解.
87.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).88.求微分方程的通解.89.90.
四、解答題(10題)91.
92.
93.求∫xlnxdx。
94.
95.
96.
97.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
98.
99.設(shè)
100.設(shè)z=ysup>2</sup>esup>3x</sup>,求dz。
五、高等數(shù)學(xué)(0題)101.
在t=1處的切線方程_______。
六、解答題(0題)102.
參考答案
1.A
2.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.
3.A由于
可知應(yīng)選A.
4.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)絕對(duì)收斂與條件收斂的概念.
注意為p=2的p級(jí)數(shù),因此為收斂級(jí)數(shù),由比較判別法可知收斂,故絕對(duì)收斂,應(yīng)選A.
5.B
6.A
7.D
8.C
9.A
10.A解析:
11.D
12.C
13.A
14.A由可變上限積分求導(dǎo)公式可知因此選A.
15.C
16.C
17.A本題考查了函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)。
18.D解析:效價(jià)是指?jìng)€(gè)人對(duì)達(dá)到某種預(yù)期成果的偏愛程度,或某種預(yù)期成果可能給行為者帶來的滿足程度。
19.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.
20.D
21.D解析:
22.B
23.C
24.C
25.Cy=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),sin0=sinπ=0,可
知y=sinx在[0,π]上滿足羅爾定理,由于(sinx)'=cosx,可知ξ=π/2時(shí),cosξ=0,因此選C。
26.D
27.C解析:
28.A因?yàn)閒"(x)=故選A。
29.D
30.D由拉格朗日定理
31.B
32.C本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。
Y=x2+1,(dy)/(dx)=2x
33.B本題考查了函數(shù)的單調(diào)性的知識(shí)點(diǎn),
因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。
34.C本題考查了二階常系數(shù)微分方程的特解的知識(shí)點(diǎn)。
因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.
35.D解析:
36.A本題考查的知識(shí)點(diǎn)有兩個(gè):羅爾中值定理;導(dǎo)數(shù)的幾何意義.
由題設(shè)條件可知f(x)在[0,1]上滿足羅爾中值定理,因此至少存在一點(diǎn)ξ∈(0,1),使f'(ξ)=0.這表明曲線y=f(x)在點(diǎn)(ξ,f(ξ))處的切線必定平行于x軸,可知A正確,C不正確.
如果曲線y=f(x)在點(diǎn)(ξ,f(ξ))處的切線平行于y軸,其中ξ∈(0,1),這條切線的斜率為∞,這表明f'(ξ)=∞為無窮大,此時(shí)說明f(x)在點(diǎn)x=ξ不可導(dǎo).因此可知B,D都不正確.
本題對(duì)照幾何圖形易于找出解答,只需依題設(shè)條件,畫出一條曲線,則可以知道應(yīng)該選A.
有些考生選B,D,這是由于不明確導(dǎo)數(shù)的幾何意義而導(dǎo)致的錯(cuò)誤.
37.C本題考查的知識(shí)點(diǎn)為極值的第-充分條件.
由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí)f(x)<0;當(dāng)x>-1時(shí),
f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.
38.C解析:
39.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。
40.C
41.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的性質(zhì).
可知應(yīng)選B.通??梢詫⑵渥鳛榕卸?jí)數(shù)發(fā)散的充分條件使用.
42.B旋轉(zhuǎn)拋物面的方程為z=x2+y2.
43.B
44.B本題考查了已知積分函數(shù)求原函數(shù)的知識(shí)點(diǎn)
45.D
46.C
47.D本題考查的知識(shí)點(diǎn)為-階微分方程的求解.
可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作-階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解.
解法1將方程認(rèn)作可分離變量方程.
解法2將方程認(rèn)作-階線性微分方程.由通解公式可得
解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:
特征方程為r+1=0,
特征根為r=-1,
48.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件
49.A解析:
50.B51.0.
本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)為奇函數(shù),因此
52.
53.-5-5解析:54.當(dāng)x→0時(shí),-1與x2等價(jià),應(yīng)滿足所以當(dāng)a=2時(shí)是等價(jià)的。55.(-2,2);本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂區(qū)間.
由于所給級(jí)數(shù)為不缺項(xiàng)情形,
可知收斂半徑,收斂區(qū)間為(-2,2).
56.本題考查的知識(shí)點(diǎn)為微分的四則運(yùn)算.
注意若u,v可微,則
57.由于已知平面的法線向量,所求平面與已知平面平行,可取所求平面法線向量,又平面過點(diǎn)Mo(1,-1,0),由平面的點(diǎn)法式方程可知,所求平面為
58.
59.1/2460.1.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的極值.
可知點(diǎn)(0,0)為z的極小值點(diǎn),極小值為1.
61.x=-2x=-2解析:
62.
63.x-arctanx+C
64.
65.由不定積分的基本公式及運(yùn)算法則,有
66.x(asinx+bcosx)
67.68.1/2本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.其積分區(qū)域如圖1-2陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1由二重積分的幾何意義可知表示積分區(qū)域D的面積,而區(qū)域D為等腰直角三角形,面積為1/2,因此.
解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿y軸正向看,入口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對(duì)x積分,后對(duì)Y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y,作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知
69.0
70.3x2本題考查了函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=x3,所以y'=3x2
71.
72.
73.由二重積分物理意義知
74.75.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
76.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年第8課中國古代的法治與教化-勤徑學(xué)升高中歷史選擇性必修1同步練測(cè)(統(tǒng)編版2019)
- 高利貸借款合同在2025年的法律地位分析
- 2025年居民共同租賃居住環(huán)境協(xié)議
- 2025年甲氨蝶呤項(xiàng)目提案報(bào)告模板
- 2025年數(shù)字電視有條件接收設(shè)備項(xiàng)目申請(qǐng)報(bào)告模式
- 2025年全屋定制用品合同樣本
- 2025年專利共有權(quán)策劃協(xié)議樣本
- 2025年中學(xué)生實(shí)驗(yàn)操作安全協(xié)議
- 2025年碳酸丙烯酯項(xiàng)目提案報(bào)告模板
- 2025年會(huì)議中心使用協(xié)議
- 外科手術(shù)及護(hù)理常規(guī)
- 北師大版五年級(jí)數(shù)學(xué)下冊(cè)教材分析解讀課件完整版
- 學(xué)校開學(xué)教師安全培訓(xùn)
- 出口潛力分析報(bào)告
- 晉升的述職報(bào)告
- 檔案盒(文件盒)標(biāo)簽?zāi)0?正面、側(cè)面)
- 消防工程施工進(jìn)度計(jì)劃橫道圖+進(jìn)度網(wǎng)絡(luò)圖
- 微信視頻號(hào)運(yùn)營技巧攻略詳解全套
- 2023CSCO非小細(xì)胞肺癌診療指南解讀
- 人教版九年級(jí)英語全冊(cè)期末復(fù)習(xí)完成句子專項(xiàng)練習(xí)
- 干部選拔任用程序
評(píng)論
0/150
提交評(píng)論