2022-2023學(xué)年河南省周口市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁
2022-2023學(xué)年河南省周口市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁
2022-2023學(xué)年河南省周口市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁
2022-2023學(xué)年河南省周口市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁
2022-2023學(xué)年河南省周口市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年河南省周口市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx

2.A.A.3B.1C.1/3D.0

3.

4.A.0

B.1

C.e

D.e2

5.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.

B.

C.

D.

6.

等于()A.A.

B.

C.

D.0

7.A.e2

B.e-2

C.1D.0

8.設(shè)f'(x0)=0,f"(x0)<0,則下列結(jié)論必定正確的是().A.A.x0為f(x)的極大值點(diǎn)

B.x0為f(x)的極小值點(diǎn)

C.x0不為f(x)的極值點(diǎn)

D.x0可能不為f(x)的極值點(diǎn)

9.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx

10.下列反常積分收斂的是()。A.∫1+∞xdx

B.∫1+∞x2dx

C.

D.

11.A.e-2

B.e-1

C.e

D.e2

12.微分方程y'+y=0的通解為y=A.e-x+C

B.-e-x+C

C.Ce-x

D.Cex

13.設(shè)f(x)=e-2x,則f'(x)=()。A.-e-2x

B.e-2x

C.-(1/2)e-2x

D.-2e-2x

14.A.A.-(1/2)B.1/2C.-1D.2

15.

16.下面哪個(gè)理論關(guān)注下屬的成熟度()

A.管理方格B.路徑—目標(biāo)理論C.領(lǐng)導(dǎo)生命周期理論D.菲德勒權(quán)變理論

17.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1

18.

19.()A.A.2xy+y2

B.x2+2xy

C.4xy

D.x2+y2

20.

21.設(shè)函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導(dǎo),f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().

A.不存在零點(diǎn)

B.存在唯一零點(diǎn)

C.存在極大值點(diǎn)

D.存在極小值點(diǎn)

22.

23.A.A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面

24.設(shè),則函數(shù)f(x)在x=a處().A.A.導(dǎo)數(shù)存在,且有f'(a)=-1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值

25.級(jí)數(shù)()。A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)

26.

27.

28.

29.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

30.A.(2+X)^2B.3(2+X)^2C.(2+X)^4D.3(2+X)^4

31.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。

A.ln2

B.ln1

C.lne

D.

32.

33.級(jí)數(shù)(a為大于0的常數(shù))().A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)

34.

35.當(dāng)x→0時(shí),與x等價(jià)的無窮小量是

A.A.

B.ln(1+x)

C.C.

D.x2(x+1)

36.

37.設(shè)f(x)=x3+x,則等于()。A.0

B.8

C.

D.

38.A.A.0B.1/2C.1D.∞

39.

40.()。A.收斂且和為0

B.收斂且和為α

C.收斂且和為α-α1

D.發(fā)散

41.

A.2B.1C.1/2D.0

42.下列關(guān)系正確的是()。A.

B.

C.

D.

43.下列關(guān)于動(dòng)載荷Kd的敘述不正確的一項(xiàng)是()。

A.公式中,△j為沖擊無以靜載荷方式作用在被沖擊物上時(shí),沖擊點(diǎn)沿沖擊方向的線位移

B.沖擊物G突然加到被沖擊物上時(shí),K1=2,這時(shí)候的沖擊力為突加載荷

C.當(dāng)時(shí),可近似取

D.動(dòng)荷因數(shù)Ka因?yàn)橛蓻_擊點(diǎn)的靜位移求得,因此不適用于整個(gè)沖擊系統(tǒng)

44.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)

45.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f(-1)=0,當(dāng)x<-1時(shí),f(x)<0;當(dāng)x>-1時(shí),f(x)>0.則下列結(jié)論肯定正確的是().

A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)

46.設(shè)x2是f(x)的一個(gè)原函數(shù),則f(x)=A.A.2x

B.x3

C.(1/3)x3+C

D.3x3+C

47.設(shè)函數(shù)f(x)=sinx,則不定積分∫f'(x)dx=A.A.sinx+CB.cosx+CC.-sinx+CD.-cosx+C

48.函數(shù)y=f(x)在(a,b)內(nèi)二階可導(dǎo),且f'(x)>0,f"(x)<0,則曲線y=f(x)在(a,b)內(nèi)().

A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸

49.

50.A.-e2x-y

B.e2x-y

C.-2e2x-y

D.2e2x-y

二、填空題(20題)51.

52.

53.

54.

55.設(shè)y=3x,則y"=_________。

56.設(shè),且k為常數(shù),則k=______.

57.微分方程y'=2的通解為__________。

58.

59.設(shè)函數(shù)y=x3,則y'=________.

60.

61.

62.冪級(jí)數(shù)

的收斂半徑為________。

63.

64.

65.

66.設(shè)函數(shù)x=3x+y2,則dz=___________

67.

68.

則F(O)=_________.

69.

70.

三、計(jì)算題(20題)71.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

72.證明:

73.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

74.

75.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

76.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

77.

78.

79.

80.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

81.將f(x)=e-2X展開為x的冪級(jí)數(shù).

82.求微分方程y"-4y'+4y=e-2x的通解.

83.

84.求曲線在點(diǎn)(1,3)處的切線方程.

85.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

86.

87.

88.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

89.求微分方程的通解.

90.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

四、解答題(10題)91.

92.若y=y(x)由方程y=x2+y2,求dy。

93.

94.

95.

96.

97.

98.

99.的面積A。

100.

五、高等數(shù)學(xué)(0題)101.f(z,y)=e-x.sin(x+2y),求

六、解答題(0題)102.

參考答案

1.A

2.A

3.D

4.B為初等函數(shù),且點(diǎn)x=0在的定義區(qū)間內(nèi),因此,故選B.

5.C

6.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

由于當(dāng)f(x)可積時(shí),定積分的值為一個(gè)確定常數(shù),因此總有

故應(yīng)選D.

7.A

8.A本題考查的知識(shí)點(diǎn)為函數(shù)極值的第二充分條件.

由極值的第二充分條件可知應(yīng)選A.

9.B

10.DA,∫1+∞xdx==∞發(fā)散;

11.D由重要極限公式及極限運(yùn)算性質(zhì),可知故選D.

12.C

13.D

14.A

15.D

16.C解析:領(lǐng)導(dǎo)生命周期理論關(guān)注下屬的成熟度。

17.B由導(dǎo)數(shù)的定義可知

可知,故應(yīng)選B。

18.C解析:

19.A

20.D解析:

21.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點(diǎn)定理可知,y=f(x)在(a,b)內(nèi)至少存在一個(gè)零點(diǎn).又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點(diǎn),則至多存在一個(gè).

綜合上述f(x)在(a,b)內(nèi)存在唯一零點(diǎn),故選B.

22.B

23.C本題考查的知識(shí)點(diǎn)為二次曲面的方程.

24.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

由于,可知f'(a)=-1,因此選A.

由于f'(a)=-1≠0,因此f(a)不可能是f(x)的極值,可知C,D都不正確.

25.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂。

由于的p級(jí)數(shù),可知為收斂級(jí)數(shù)。

可知收斂,所給級(jí)數(shù)絕對(duì)收斂,故應(yīng)選A。

26.D

27.D

28.B

29.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

30.B

31.D由拉格朗日定理

32.A

33.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)絕對(duì)收斂與條件收斂的概念.

注意為p=2的p級(jí)數(shù),因此為收斂級(jí)數(shù),由比較判別法可知收斂,故絕對(duì)收斂,應(yīng)選A.

34.B解析:

35.B本題考查了等價(jià)無窮小量的知識(shí)點(diǎn)

36.C

37.A本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性質(zhì)。由于所給定積分的積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對(duì)稱性質(zhì)可知

可知應(yīng)選A。

38.A

39.C

40.C

41.D本題考查的知識(shí)點(diǎn)為重要極限公式與無窮小量的性質(zhì).

42.B由不定積分的性質(zhì)可知,故選B.

43.D

44.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。

45.C本題考查的知識(shí)點(diǎn)為極值的第-充分條件.

由f(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí)f(x)<0;當(dāng)x>-1時(shí),

f(x)>1,由極值的第-充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.

46.A由于x2為f(x)的一個(gè)原函數(shù),由原函數(shù)的定義可知f(x)=(x2)'=2x,故選A。

47.A由不定積分性質(zhì)∫f'(x)dx=f(x)+C,可知選A。

48.B解析:本題考查的知識(shí)點(diǎn)為利用一階導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.

由于在(a,b)內(nèi)f'(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,又由于f"(x)<0,可知曲線y=f(x)在(a,b)內(nèi)為凹,可知應(yīng)選B.

49.C解析:

50.C本題考查了二元函數(shù)的高階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。

51.

本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

注意此處冪級(jí)數(shù)為缺項(xiàng)情形.

52.2

53.2

54.

55.3e3x

56.

本題考查的知識(shí)點(diǎn)為廣義積分的計(jì)算.

57.y=2x+C

58.

59.3x2本題考查了函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=x3,所以y'=3x2

60.

61.[01)∪(1+∞)

62.所給冪級(jí)數(shù)為不缺項(xiàng)情形,可知ρ=1,因此收斂半徑R==1。

63.

64.e2

65.e1/2e1/2

解析:

66.

67.0本題考查了利用極坐標(biāo)求二重積分的知識(shí)點(diǎn).

68.

69.

本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).

70.1

71.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

72.

73.

74.

75.

列表:

說明

76.

77.

78.

79.

80.由等價(jià)無窮小量的定義可知

81.

82.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

83.

84.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

85.

86.由一階線性微分方程通解公式有

87.

88.由二重積分物理意義知

89.

90.函數(shù)的定義域?yàn)?/p>

注意

91.利用洛必達(dá)法則原式,接下去有兩種解法:解法1利用等價(jià)無窮小代換.

解法2利用洛必達(dá)法則.

本題考查的知識(shí)點(diǎn)為兩個(gè):“”型極限和可變上限積分的求導(dǎo).

對(duì)于可變上(下)限積分形式的極限,如果為“

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論