2022-2023學(xué)年遼寧省鐵嶺市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2022-2023學(xué)年遼寧省鐵嶺市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2022-2023學(xué)年遼寧省鐵嶺市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2022-2023學(xué)年遼寧省鐵嶺市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2022-2023學(xué)年遼寧省鐵嶺市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年遼寧省鐵嶺市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.當(dāng)x→0時(shí),3x2+2x3是3x2的()。A.高階無(wú)窮小B.低階無(wú)窮小C.同階無(wú)窮小但不是等價(jià)無(wú)窮小D.等價(jià)無(wú)窮小

2.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)

3.

4.

5.

6.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

7.設(shè)函數(shù)f(x)=COS2x,則f′(x)=().

A.2sin2x

B.-2sin2x

C.sin2x

D.-sin2x

8.微分方程y'+y=0的通解為()。A.y=ex

B.y=e-x

C.y=Cex

D.y=Ce-x

9.()。A.3B.2C.1D.0

10.

11.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于().A.A.0B.π/4C.π/2D.π12.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx

13.設(shè)函數(shù)/(x)=cosx,則

A.1

B.0

C.

D.-1

14.

15.

16.

17.A.A.小于0B.大于0C.等于0D.不確定18.為二次積分為()。A.

B.

C.

D.

19.

20.A.A.僅為x=+1B.僅為x=0C.僅為x=-1D.為x=0,±1

21.

22.

23.在空間直角坐標(biāo)系中,方程x+z2=z的圖形是A.A.圓柱面B.圓C.拋物線D.旋轉(zhuǎn)拋物面24.

25.設(shè)平面π1:2x+y+4z+4=0π1:2x-8y+Z+1=0則平面π1與π2的位置關(guān)系是A.A.相交且垂直B.相交但不垂直C.平行但不重合D.重合

26.

27.設(shè)f(x)為連續(xù)函數(shù),則等于()A.A.

B.

C.

D.

28.擺動(dòng)導(dǎo)桿機(jī)構(gòu)如圖所示,已知φ=ωt(ω為常數(shù)),O點(diǎn)到滑竿CD間的距離為l,則關(guān)于滑竿上銷(xiāo)釘A的運(yùn)動(dòng)參數(shù)計(jì)算有誤的是()。

A.運(yùn)動(dòng)方程為x=ltan∮=ltanωt

B.速度方程為

C.加速度方程

D.加速度方程

29.

30.A.e-2

B.e-1

C.e

D.e2

31.下列關(guān)系式正確的是()A.A.

B.

C.

D.

32.

33.設(shè)f(x)=x3+x,則等于()。A.0

B.8

C.

D.

34.

35.設(shè)區(qū)域,將二重積分在極坐標(biāo)系下化為二次積分為()A.A.

B.

C.

D.

36.

37.若,則下列命題中正確的有()。A.

B.

C.

D.

38.A.A.6dx+6dyB.3dx+6dyC.6dx+3dyD.3dx+3ay

39.

40.單位長(zhǎng)度扭轉(zhuǎn)角θ與下列哪項(xiàng)無(wú)關(guān)()。

A.桿的長(zhǎng)度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)

41.

42.設(shè)y=sin2x,則y'等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x43.設(shè)y=sin2x,則y等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x

44.

45.微分方程y'=x的通解為A.A.2x2+C

B.x2+C

C.(1/2)x2+C

D.2x+C

46.當(dāng)x→0時(shí),與x等價(jià)的無(wú)窮小量是

A.A.

B.ln(1+x)

C.C.

D.x2(x+1)

47.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2

48.()工作是對(duì)決策工作在時(shí)間和空間兩個(gè)緯度上進(jìn)一步的展開(kāi)和細(xì)化。

A.計(jì)劃B.組織C.控制D.領(lǐng)導(dǎo)

49.

50.設(shè)f(x)在點(diǎn)x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點(diǎn)x0必定可導(dǎo)B.f(x)在點(diǎn)x0必定不可導(dǎo)C.必定存在D.可能不存在二、填空題(20題)51.設(shè)y=ln(x+2),貝y"=________。52.設(shè)f(x)在x=1處連續(xù),=2,則=________。

53.

54.

55.

56.

57.

58.

59.60.61.62.

63.

64.

65.

66.

67.

68.

69.70.三、計(jì)算題(20題)71.72.73.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.74.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

75.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.76.求曲線在點(diǎn)(1,3)處的切線方程.77.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).

78.

79.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).80.

81.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

82.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

83.

84.

85.求微分方程y"-4y'+4y=e-2x的通解.

86.87.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則88.證明:89.求微分方程的通解.90.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)91.

92.

93.求由方程確定的y=y(x)的導(dǎo)函數(shù)y'.

94.

95.研究y=3x4-8x3+6x2+5的增減性、極值、極值點(diǎn)、曲線y=f(x)的凹凸區(qū)間與拐點(diǎn).

96.求微分方程y"-4y'+4y=e-2x的通解。

97.

98.(本題滿分8分)99.

100.

五、高等數(shù)學(xué)(0題)101.

,求xzx+yzy=_____________。

六、解答題(0題)102.求由曲線y=cos、x=0及y=0所圍第一象限部分圖形的面積A及該圖形繞x軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vx。

參考答案

1.D本題考查的知識(shí)點(diǎn)為無(wú)窮小階的比較。

由于,可知點(diǎn)x→0時(shí)3x2+2x3與3x2為等價(jià)無(wú)窮小,故應(yīng)選D。

2.C本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).

由于當(dāng)f(x)連續(xù)時(shí),,可知應(yīng)選C.

3.B解析:

4.B

5.D

6.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

7.B由復(fù)合函數(shù)求導(dǎo)法則,可得

故選B.

8.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量

兩端分別積分

或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。

9.A

10.A

11.C本題考查的知識(shí)點(diǎn)為羅爾定理的條件與結(jié)論.

由于y=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),且y|x=0=0=y|x=π,可知y=sinx在[0,π]上滿足羅爾定理,因此必定存在ξ∈(0,π),使y'|x=ξ=cosx|x=ξ=cosξ=0,從而應(yīng)有.

故知應(yīng)選C.

12.A

13.D

14.B解析:

15.C

16.B

17.C

18.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分。由于在極坐標(biāo)系下積分區(qū)域D可以表示為

故知應(yīng)選A。

19.B

20.C

21.C

22.D解析:un、vn可能為任意數(shù)值,因此正項(xiàng)級(jí)數(shù)的比較判別法不能成立,可知應(yīng)選D。

23.A

24.C

25.A平面π1的法線向量n1=(2,1,4),平面π2的法線向量n2=(2,-8,1),n1*n1=0??芍獌善矫娲怪?,因此選A。

26.B解析:

27.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛-萊公式.

可知應(yīng)選D.

28.C

29.A

30.D由重要極限公式及極限運(yùn)算性質(zhì),可知故選D.

31.C

32.B

33.A本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱(chēng)性質(zhì)。由于所給定積分的積分區(qū)間為對(duì)稱(chēng)區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對(duì)稱(chēng)性質(zhì)可知

可知應(yīng)選A。

34.D

35.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分.

由于在極坐標(biāo)系下積分區(qū)域D可以表示為

0≤θ≤π,0≤r≤a.

因此

故知應(yīng)選A.

36.B

37.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。

38.C

39.D解析:

40.A

41.D

42.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.

Y=sin2x,

則y'=cos(2x)·(2x)'=2cos2x.

可知應(yīng)選D.

43.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.

44.C

45.C

46.B本題考查了等價(jià)無(wú)窮小量的知識(shí)點(diǎn)

47.A由于

可知應(yīng)選A.

48.A解析:計(jì)劃工作是對(duì)決策工作在時(shí)間和空間兩個(gè)緯度上進(jìn)一步的展開(kāi)和細(xì)分。

49.C

50.C本題考查的知識(shí)點(diǎn)為極限、連續(xù)與可導(dǎo)性的關(guān)系.

函數(shù)f(x)在點(diǎn)x0可導(dǎo),則f(x)在點(diǎn)x0必連續(xù).

函數(shù)f(x)在點(diǎn)x0連續(xù),則必定存在.

函數(shù)f(x)在點(diǎn)x0連續(xù),f(x)在點(diǎn)x0不一定可導(dǎo).

函數(shù)f(x)在點(diǎn)x0不連續(xù),則f(x)在點(diǎn)x0必定不可導(dǎo).

這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.

51.52.由連續(xù)函數(shù)的充要條件知f(x)在x0處連續(xù),則。

53.y=xe+Cy=xe+C解析:

54.

55.1/21/2解析:

56.-1

57.1

58.(-∞2)(-∞,2)解析:

59.

60.

61.

本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.

可分離變量方程求解的一般方法為:

(1)變量分離;

(2)兩端積分.

62.

63.

64.

65.3x2siny

66.

解析:

67.00解析:

68.

69.

70.

71.

72.

73.

74.

75.由二重積分物理意義知

76.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

77.

78.

79.

列表:

說(shuō)明

80.

81.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%82.函數(shù)的定義域?yàn)?/p>

注意

83.84.由一階線性微分方程通解公式有

85.解:原方程

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論