版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
MemeticAlgorithmMember:楊勇佳、易科、朱家驊、蘇航Contents1Introduction2ThedevelopmentofMAs2.11stgeneration2.22ndgeneration2.33rdgeneration3
Applications4ExampleIntroductiongenememeCommonInthegeneticprocessofcontinuousevolutionanddevelopmentthroughcrossoverandmutationoperationsSuccessionanddevelopmentinthecommunicationprocessthroughinteraction,integration,mutation,etc.DifferentInbiologicalevolution,variationisrandom,onlyafewgoodvariationcanberetainedinnaturalselectionCulturaltransmissionprocessoftenwithfullknowledge-basedprofessionalfields,evolutionisfasterHawkins(1976)raisedmemenotionIntroductionInspiredbybothDarwinianprinciplesofnaturalevolutionandDawkins'notionofameme,theterm“MemeticAlgorithm”(MA)wasintroducedbyMoscatoin1989whereheviewedMAasbeingclosetoaformofpopulation-basedhybrid
geneticalgorithm(GA)coupledwithanindividuallearningprocedurecapableofperforminglocalrefinements.Ingeneral,usingtheideasofmemeticswithinacomputationalframeworkiscalled"MemeticComputingorMemeticComputation"(MC).MAisamoreconstrainednotionofMC.Morespecifically,MAcoversoneareaofMCThedevelopmentofMAs—1st
generationamarriagebetweenapopulation-basedglobalsearch(oftenintheformofanevolutionaryalgorithm)coupledwithaculturalevolutionarystage.ThissuggestswhythetermMAstirredupcriticismsandcontroversiesamongresearcherswhenfirstintroduced.Pseudocode:Procedure
MemeticAlgorithm
Initialize:Generateaninitialpopulation;
while
StoppingconditionsarenotsatisfieddoEvaluateallindividualsinthepopulation.Evolveanewpopulationusingstochasticsearchoperators.Selectthesubsetofindividuals,thatshouldundergotheindividualimprovementprocedure.
for
eachindividualindoPerformindividuallearningusingmeme(s)withfrequencyorprobabilityofforaperiodof.ProceedwithLamarckianorBaldwinianlearning.
endforendwhileHybrid
AlgorithmsThedevelopmentofMAs—2nd
generationexhibitingtheprinciplesofmemetictransmissionandselectionintheirdesign.InMulti-memeMA,thememeticmaterialisencodedaspartofthe
genotype.MAconsideringmultipleindividuallearningmethodswithinanevolutionarysystem,thereaderisreferredto.Multi-meme,Hyper-heuristicandMeta-LamarckianMAThedevelopmentofMAs—3nd
generationCo-evolution[8]
andself-generatingMAs[9]
Incontrastto2ndgenerationMAwhichassumesthatthememestobeusedareknownapriori,3rdgenerationMAutilizesarule-basedlocalsearchtosupplementcandidatesolutionswithintheevolutionarysystem,thuscapturingregularlyrepeatedfeaturesorpatternsintheproblemspace.Thebasicmodel
of
MAsInitialpopulationTheinitialparametersofthealgorithmpopSizePopulationsizeoffspringSizeThenumberobtainedbytheoffspringgeneratingfunctionlLengthcodingFFitnessfunctionGGeneratingfunctionUUpdatefunctionLCollectionoflocalsearchstrategyMAMethodForalltheproblemswewanttofindtheoptimalsolution.facingafundamentalquestionhowtogenerationPseudocode:ProcessDo-Generation(↓↑pop:individual[])variablesbreeders,newpop:Individual[];beginbreeders←Select-From-Population(pop);newpop←Generate-New-Population(breeders);pop←Update-Population(pop,newpop)endMAMethod
ForGenerate-New-Populationprocess,themosttypicalsituationinvolvesutilizingjusttwooperators:
recombinationandmutation.Pseudocode:ProcessGenerate-New-Population(↓pop:Individual[],↓op:Operator[])→Individual[]variablesbuffer:Individual[][];j:[1..|op|];beginbuffer[0]←pop;forj←1:|op|dobuffer[j]←Apply-Operator(op[j],buffer[j?1]);Endfor;Inessence,amutationoperatormustgenerateanewsolutionbypartly
modifyinganexistingsolution.Thismodificationcanberandom–asitistypicallythecase–orcanbeendowedwithproblem-dependentinformationsoastobiasthesearchtoprobably-goodregionsofthesearchspaceMAMethodMAMethodPseudocode:ProcessLocal-Improver(↓↑c(diǎn)urrent:Individual,↓op:Operator)
variables
new:Individual
begin
repeat
new←Apply-Operator(op,current);
if(Fg(new)?Fg(current))then
current←new;
endif
untilLocal-Improver-Termination-Criterion();
returncurrent;
endMAMethodAfterhavingpresentedtheinnardsofthegenerationprocess,wecannowhaveaccesstothelargerpicture.ThefunctioningofaMAconsistsoftheiterationofthisbasicgenerationalstepPseudocode:ProcessMA()→Individual[]
variables
pop:Individual[];
begin
pop←Generate-Initial-Population();
repeat
pop←Do-Generation(pop)
ifConverged(pop)then
pop←Restart-Population(pop);
endif
untilMA-Termination-Criterion()
endMAMethodTheGenerate-Initial-Populationprocessisresponsibleforcreatingtheinitialsetof|pop|configurationsPseudocode:ProcessGenerate-Initial-Population(↓μ:N)→Individual[]
variables
pop:Individual[];
ind:Individual;
j:[1..μ];
begin
forj←1:μdo
ind←Generate-Random-Solution();
pop[j]←Local-Improver(ind);
endfor
returnpop
endMAMethodConsiderthatthepopulationmayreachastateinwhichthegenerationofnewimprovedsolutionbeveryunlikelyPseudocode:ProcessRestart-Population(↓pop:Individual[])→Individual[]
variables
newpop:Individual[];
j,#preserved:[1..|pop|];
begin
#preserved←|pop|·%PRESERVE;
forj←1:#preserveddo
newpop[j]←ithBest(pop,j);
endfor
forj←(#preserved+1):|pop|do
newpop[j]←Generate-Random-Configuration();
newpop[j]←Local-Improver(newpop[j]);
endfor;
returnnewpop
endMAsInfact,MAsisageneticalgorithmframework,isaconcept,inthisframework,usingdifferentsearchstrategiescanconstitutedifferentMAs,suchasglobalsearchstrategycanbeusedgeneticalgorithms,evolutionstrategies,evolutionaryprogramming,etc.localsearchstrategycanbeusedtoclimbthesearch,simulatedannealing,greedyalgorithms,tabusearch,guidedlocalsearch.Applicationsmanyclassical
NP
problemForexamplegraphpartitioning,
multidimensionalknapsack,
travellingsalesmanproblem,
quadraticassignmentproblem,
setcoverproblem,
minimalgraphcoloring,
maxindependentsetproblem,
binpackingproblem.Comparisonwiththegeneticalgorithmconvergesfaster,betterresults.Example
Example
Example
Example
Example
ExampleStepusingsimulatedannealingalgorithmforlocalsearchSTEP1Givenaninitialtemperature,Individualastheinitialstateofthesimulatedannealingalgorithm;STEP2Generateanewstate,theneighborhoodfunctiondefinedasInotherstatesofthetwoitemstochoose;STEP3
calculatethenumberofoldandnewstateenergy,theenergyfunctionalIs
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB12-T 995-2023 綠色公共機(jī)構(gòu)評價技術(shù)規(guī)范
- 廣東省湛江市(2024年-2025年小學(xué)五年級語文)統(tǒng)編版能力評測(上學(xué)期)試卷及答案
- 湖北省襄樊市(2024年-2025年小學(xué)五年級語文)人教版專題練習(xí)((上下)學(xué)期)試卷及答案
- 機(jī)床夾具設(shè)計電子教案第十五講
- 二年級語文第四冊電子教案
- 上海市市轄區(qū)(2024年-2025年小學(xué)五年級語文)人教版綜合練習(xí)((上下)學(xué)期)試卷及答案
- 一年級數(shù)學(xué)計算題專項練習(xí)1000題匯編
- 四年級語文下冊教案
- DB11T 1108-2014 地類認(rèn)定規(guī)范
- 坐標(biāo)測量裝置產(chǎn)業(yè)深度調(diào)研及未來發(fā)展現(xiàn)狀趨勢
- 2024年石家莊市長安區(qū)四年級數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題含解析
- 2024年中小學(xué)“1530”安全教育實施方案
- 生豬屠宰獸醫(yī)衛(wèi)生人員考試題庫答案(414道)
- 2024-2030年中國高純鍺 (HPGE) 輻射探測器行業(yè)運(yùn)營前景及發(fā)展現(xiàn)狀調(diào)研報告
- 《第三單元 圖形化編程之聰明的角色 第1節(jié) 廣播火箭發(fā)射》教學(xué)設(shè)計-2024-2025學(xué)年川教版信息技術(shù)(2019)五年級上冊
- 運(yùn)動康復(fù)服務(wù)行業(yè)五年發(fā)展洞察報告
- YY/T 0063-2024醫(yī)用電氣設(shè)備醫(yī)用診斷X射線管組件焦點(diǎn)尺寸及相關(guān)特性
- 2024年甘肅酒泉肅州區(qū)選拔項目人員納入編制管理107人高頻考題難、易錯點(diǎn)模擬試題(共500題)附帶答案詳解
- 子宮頸胃型腺癌臨床診治中國專家共識(2024年版)解讀
- 導(dǎo)截流設(shè)計及施工方案
- 2025版 高考試題分析-數(shù)學(xué)-部分4
評論
0/150
提交評論