版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年廣東省清遠(yuǎn)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.當(dāng)x→0時(shí),3x是x的().
A.高階無(wú)窮小量B.等價(jià)無(wú)窮小量C.同階無(wú)窮小量,但不是等價(jià)無(wú)窮小量D.低階無(wú)窮小量
2.
3.
4.()。A.3B.2C.1D.0
5.
6.A.sin(2x-1)+C
B.
C.-sin(2x-1)+C
D.
7.A.A.2/3B.3/2C.2D.38.
9.A.A.1B.2C.3D.4
10.A.0
B.1
C.e
D.e2
11.。A.2B.1C.-1/2D.012.
13.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無(wú)關(guān)條件
14.微分方程y"+y'=0的通解為
A.y=Ce-x
B.y=e-x+C
C.y=C1e-x+C2
D.y=e-x
15.函數(shù)f(x)=5x在區(qū)間[-1,1]上的最大值是A.A.-(1/5)B.0C.1/5D.516.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
17.
18.
19.
20.A.0B.1C.2D.4二、填空題(20題)21.設(shè),則y'=______。
22.
23.
24.
25.設(shè)z=xy,則dz=______.
26.27.
28.
29.
30.
31.
32.
33.
34.35.設(shè)y=e3x知,則y'_______。
36.
37.
38.39.
40.
三、計(jì)算題(20題)41.
42.求微分方程y"-4y'+4y=e-2x的通解.
43.44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.45.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則46.47.證明:48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.49.求曲線在點(diǎn)(1,3)處的切線方程.50.求微分方程的通解.51.將f(x)=e-2X展開為x的冪級(jí)數(shù).
52.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
53.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).55.
56.
57.
58.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.59.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
60.
四、解答題(10題)61.在曲線y=x2(x≥0)上某點(diǎn)A(a,a2)處作切線,使該切線與曲線及x軸所圍成的圖形的面積為1/12.試求:(1)切點(diǎn)A的坐標(biāo)((a,a2).(2)過(guò)切點(diǎn)A的切線方程.62.(本題滿分8分)設(shè)y=x+sinx,求y.63.
64.
65.設(shè)且f(x)在點(diǎn)x=0處連續(xù)b.
66.
67.
68.(本題滿分8分)
69.
70.
五、高等數(shù)學(xué)(0題)71.
確定a,b使得f(x)在x=0可導(dǎo)。六、解答題(0題)72.
參考答案
1.C本題考查的知識(shí)點(diǎn)為無(wú)窮小量階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時(shí),3x是x的同階無(wú)窮小量,但不是等價(jià)無(wú)窮小量,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無(wú)窮小量β與無(wú)窮小量α的階的關(guān)系時(shí),要判定極限
這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.
2.B
3.C
4.A
5.B解析:
6.B本題考查的知識(shí)點(diǎn)為不定積分換元積分法。
因此選B。
7.A
8.D
9.D
10.B為初等函數(shù),且點(diǎn)x=0在的定義區(qū)間內(nèi),因此,故選B.
11.A
12.B
13.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件
14.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。
15.Df(x)=5x,f'(x)=5xln5>0,可知f(x)在[-1,1]上單調(diào)增加,最大值為f(1)=5,所以選D。
16.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
17.A
18.B
19.C解析:
20.A本題考查了二重積分的知識(shí)點(diǎn)。21.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。
22.
23.y''=x(asinx+bcosx)
24.
25.yxy-1dx+xylnxdy
26.x=-1
27.本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
28.
29.
30.1/2
31.
32.
33.2x-4y+8z-7=0
34.35.3e3x
36.yf''(xy)+f'(x+y)+yf''(x+y)
37.
38.
39.e-1/2
40.e241.由一階線性微分方程通解公式有
42.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
43.
44.
45.由等價(jià)無(wú)窮小量的定義可知
46.
47.
48.由二重積分物理意義知
49.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
50.
51.
52.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%53.函數(shù)的定義域?yàn)?/p>
注意
54.
列表:
說(shuō)明
55.
56.
57.
則
58.
59.
60.61.由于y=x2,則y'=2x,曲線y=x2上過(guò)點(diǎn)A(a,a2)的切線方程為y-a2=2a(x-a),即y=2ax-a2,曲線y=x2,其過(guò)點(diǎn)A(a,a2)的切線及x軸圍成的平面圖形的面積
由題設(shè)S=1/12,可得a=1,因此A點(diǎn)的坐標(biāo)為(1,1).過(guò)A點(diǎn)的切線方程為y-1=2(x-1)或y=2x-1.解析:本題考查的知識(shí)點(diǎn)為定積分的幾何意義和曲線的切線方程。本題在利用定積分表示平面圖形時(shí),以y為積分變量,以簡(jiǎn)化運(yùn)算,這是值得注意的技巧。62.由導(dǎo)數(shù)的四則運(yùn)算法則可知
63.
64.
65.
66.
67.
68.本題考查的知識(shí)點(diǎn)為曲線的切線方程.
69.
70.
71.
①f(0)=1;f-=(0)=1;+(0)=a+b;∵可導(dǎo)一定連續(xù)∴a+b=1②
∵可導(dǎo)f-
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度地基資源買賣合同協(xié)議3篇
- 概率論課程設(shè)計(jì)小標(biāo)題
- 2024-2025學(xué)年度山東省德州市臨邑博文中學(xué)高一第一學(xué)期第三次月考?xì)v史試題
- 英語(yǔ)學(xué)科的課程設(shè)計(jì)方案
- 猜音符課程設(shè)計(jì)
- 網(wǎng)站課程設(shè)計(jì)收獲總結(jié)
- 班級(jí)班長(zhǎng)培訓(xùn)課程設(shè)計(jì)
- 穩(wěn)壓器課程設(shè)計(jì)
- 英語(yǔ)交際用語(yǔ)課程設(shè)計(jì)
- 教輔行業(yè)助理的工作總結(jié)和技能要求
- 小學(xué)舞蹈課學(xué)情分析
- GB 31825-2024制漿造紙單位產(chǎn)品能源消耗限額
- 第15課 十月革命與蘇聯(lián)社會(huì)主義建設(shè)(教學(xué)設(shè)計(jì))-【中職專用】《世界歷史》
- MOOC 天氣學(xué)-國(guó)防科技大學(xué) 中國(guó)大學(xué)慕課答案
- 小學(xué)教育教學(xué)現(xiàn)場(chǎng)會(huì)活動(dòng)方案
- 文言文閱讀-【中職】廣東省近十年(2014-2023)中職春季高考語(yǔ)文真題匯編(解析版)
- 凸透鏡和凹透鏡課件
- 歐洲監(jiān)控行業(yè)分析
- NB/T 11266-2023火儲(chǔ)聯(lián)合調(diào)頻項(xiàng)目后評(píng)估導(dǎo)則
- 上海中心幕墻施工方案
- 某中央空調(diào)機(jī)房拆除施工方案
評(píng)論
0/150
提交評(píng)論